Lirong Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/25332/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advanced Electrolytes for Fastâ€Charging Highâ€Voltage Lithiumâ€Ion Batteries in Wideâ€Temperature Range. Advanced Energy Materials, 2020, 10, 2000368.	19.5	159
2	Nonflammable Electrolytes for Lithium Ion Batteries Enabled by Ultraconformal Passivation Interphases. ACS Energy Letters, 2019, 4, 2529-2534.	17.4	112
3	Effect of Water Chemistry and Hydrodynamics on Nitrogen Transformation Activity and Microbial Community Functional Potential in Hyporheic Zone Sediment Columns. Environmental Science & Technology, 2017, 51, 4877-4886.	10.0	79
4	Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam. Journal of Hazardous Materials, 2011, 191, 249-257.	12.4	77
5	Measurement of Mass-Transfer Rates for Surfactant-Enhanced Solubilization of Nonaqueous Phase Liquids. Environmental Science & Technology, 1999, 33, 2965-2972.	10.0	76
6	Advanced Lowâ€Flammable Electrolytes for Stable Operation of Highâ€Voltage Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2021, 60, 12999-13006.	13.8	70
7	Oxidative Remobilization of Biogenic Uranium(IV) Precipitates. Journal of Environmental Quality, 2005, 34, 1763-1771.	2.0	59
8	The effects of surfactant formulation on nonequilibrium NAPL solubilization. Journal of Contaminant Hydrology, 2003, 60, 55-75.	3.3	53
9	Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation. Journal of Hazardous Materials, 2011, 186, 1773-1780.	12.4	53
10	Stimuli-responsive/rheoreversible hydraulic fracturing fluids as a greener alternative to support geothermal and fossil energy production. Green Chemistry, 2015, 17, 2799-2812.	9.0	48
11	Optimized Electrolyte with High Electrochemical Stability and Oxygen Solubility for Lithium–Oxygen and Lithium–Air Batteries. ACS Energy Letters, 2020, 5, 2182-2190.	17.4	45
12	Physics of Partially Saturated Porous Media: Residual Saturation and Seismic-Wave Propagation. Annual Review of Earth and Planetary Sciences, 2001, 29, 419-460.	11.0	44
13	Foam Delivery of Calcium Polysulfide to the Vadose Zone for Chromium(VI) Immobilization: A Laboratory Evaluation. Vadose Zone Journal, 2009, 8, 976-985.	2.2	41
14	Effects of Fluorinated Diluents in Localized Highâ€Concentration Electrolytes for Lithium–Oxygen Batteries. Advanced Functional Materials, 2021, 31, 2002927.	14.9	39
15	Visualization of surfactant-enhanced nonaqueous phase liquid mobilization and solubilization in a two-dimensional micromodel. Water Resources Research, 2001, 37, 523-537.	4.2	38
16	Demonstration of Combined Zero-Valent Iron and Electrical Resistance Heating for In Situ Trichloroethene Remediation. Environmental Science & Technology, 2011, 45, 5346-5351.	10.0	38
17	Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments. Journal of Contaminant Hydrology, 2013, 151, 155-175.	3.3	38
18	Foam Delivery of Amendments for Vadose Zone Remediation: Propagation Performance in Unsaturated Sediments, Vadose Zone Journal, 2010, 9, 757-767.	2.2	35

LIRONG ZHONG

#	Article	IF	CITATIONS
19	Enabling Ether-Based Electrolytes for Long Cycle Life of Lithium-Ion Batteries at High Charge Voltage. ACS Applied Materials & Interfaces, 2020, 12, 54893-54903.	8.0	35
20	A combined management scheme to simultaneously mitigate As and Cd concentrations in rice cultivated in contaminated paddy soil. Journal of Hazardous Materials, 2021, 416, 125837.	12.4	35
21	Influence of Sediment Bioreduction and Reoxidation on Uranium Sorption. Environmental Science & Technology, 2005, 39, 4125-4133.	10.0	30
22	Arsenic stabilization performance of a novel starch-modified Fe-Mn binary oxide colloid. Science of the Total Environment, 2020, 707, 136064.	8.0	25
23	Microbial Reduction of Intragrain U(VI) in Contaminated Sediment. Environmental Science & Technology, 2009, 43, 4928-4933.	10.0	24
24	Field Test of Enhanced Remedial Amendment Delivery Using a Shearâ€Thinning Fluid. Ground Water Monitoring and Remediation, 2015, 35, 34-45.	0.8	22
25	Foam-Assisted Delivery of Nanoscale Zero Valent Iron in Porous Media. Journal of Environmental Engineering, ASCE, 2013, 139, 1206-1212.	1.4	21
26	Sulfone-based electrolytes for high energy density lithium-ion batteries. Journal of Power Sources, 2022, 527, 231171.	7.8	21
27	Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: A two-dimensional flow cell study. Chemosphere, 2016, 144, 2142-2149.	8.2	19
28	Transport of organic contaminants mobilized from coal through sandstone overlying a geological carbon sequestration reservoir. International Journal of Greenhouse Gas Control, 2014, 21, 158-164.	4.6	17
29	Advanced Lowâ€Flammable Electrolytes for Stable Operation of Highâ€Voltage Lithiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 13109-13116.	2.0	16
30	Mobilization and transport of organic compounds from reservoir rock and caprock in geological carbon sequestration sites. Environmental Earth Sciences, 2014, 71, 4261-4272.	2.7	13
31	Ammonia gas transport and reactions in unsaturated sediments: Implications for use as an amendment to immobilize inorganic contaminants. Journal of Hazardous Materials, 2015, 289, 118-129.	12.4	13
32	Benzene homologues contaminants in a former herbicide factory site: distribution, attenuation, risk, and remediation implication. Environmental Geochemistry and Health, 2020, 42, 241-253.	3.4	13
33	Injectable silica–permanganate gel as a slow-release MnO ₄ ^{â~'} source for groundwater remediation: rheological properties and release dynamics. Environmental Sciences: Processes and Impacts, 2016, 18, 256-264.	3.5	11
34	On-Site Solidification/Stabilization of Cd, Zn, and Pb Co-Contaminated Soil Using Cement: Field Trial at Dongdagou Ditch, Northwest China. Environmental Engineering Science, 2018, 35, 1329-1339.	1.6	11
35	Experimental Investigation of the Effective Foam Viscosity in Unsaturated Porous Media. Vadose Zone Journal, 2012, 11, vzj2011.0190.	2.2	10
36	Transport of perfluorocarbon tracers and carbon dioxide in sediment columns – Evaluating the application of PFC tracers for CO2 leakage detection. Applied Geochemistry, 2014, 45, 25-32.	3.0	10

LIRONG ZHONG

#	Article	IF	CITATIONS
37	Tunable Porosity in Fused Filament 3D-Printed Blends of Intrinsically Porous Polymer and Thermoplastic Aliphatic Polyesters Polycaprolactone and Polylactic Acid. ACS Applied Polymer Materials, 2019, 1, 482-492.	4.4	10
38	Noble and major gases released from rock core materials as intrinsic tracers for detecting carbon dioxide leakage – Laboratory evaluation. International Journal of Greenhouse Gas Control, 2019, 89, 76-88.	4.6	9
39	Groundwater quality. Water Environment Research, 1997, 69, 777-844.	2.7	8
40	Remediation of Technetium in Vadose Zone Sediments Using Ammonia and Hydrogen Sulfide Gases. Vadose Zone Journal, 2015, 14, 1-12.	2.2	8
41	Facile Dual-Protection Layer and Advanced Electrolyte Enhancing Performances of Cobalt-free/Nickel-rich Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17405-17414.	8.0	8
42	Uranium(VI) diffusion in low-permeability subsurface materials. Radiochimica Acta, 2010, 98, 719-726.	1.2	7
43	Remedial Amendment Delivery Near the Water Table Using Shear Thinning Fluids: Experiments and Numerical Simulations. Environmental Processes, 2014, 1, 331-351.	3.5	7
44	Geochemical Monitoring Considerations for the FutureGen 2.0 Project. Energy Procedia, 2014, 63, 4095-4111.	1.8	7
45	Novel highly dispersible, thermally stable core/shell proppants for geothermal applications. Geothermics, 2017, 70, 98-109.	3.4	7
46	Model fit to experimental data for foam-assisted deep vadose zone remediation. Journal of Hazardous Materials, 2014, 264, 460-473.	12.4	6
47	Reducing Arsenic Concentration in Panax notoginseng via Contaminant Immobilization in Soil Using Fe–Ce Oxide. Journal of Environmental Quality, 2018, 47, 312-317.	2.0	6
48	Uranium Immobilization by Hydrogen Sulfide Gaseous Treatment under Vadose Zone Conditions. Vadose Zone Journal, 2007, 6, 149-157.	2.2	5
49	LNAPL Removal from Unsaturated Porous Media Using Surfactant Infiltration. Vadose Zone Journal, 2012, 11, vzj2011.0166.	2.2	5
50	Microbial Methylation of Iodide in Unconfined Aquifer Sediments at the Hanford Site, USA. Frontiers in Microbiology, 2019, 10, 2460.	3.5	5
51	Establishing Vadose Zone Slowâ€Release Carbon Sources for Enhanced Bioremediation Using Silica Suspension. Vadose Zone Journal, 2018, 17, 1-10.	2.2	4
52	Enhanced delivery of engineered Fe-Mn binary oxides in heterogeneous porous media for efficient arsenic stabilization. Journal of Hazardous Materials, 2022, 424, 127371.	12.4	4
53	Mica filled polyetherketoneketones for material extrusion 3D printing. Additive Manufacturing, 2022, 49, 102492.	3.0	4
54	Physical control on CCl4 and CHCl3 desorption from artificially contaminated and aged sediments with supercritical carbon dioxide. Chemosphere, 2009, 74, 494-500.	8.2	3

LIRONG ZHONG

#	Article	IF	CITATIONS
55	Influence of scCO2 Injection on Precipitation and Metals Migration, and Changes in Electrical Resistivity. Energy Procedia, 2014, 63, 3285-3292.	1.8	3
56	Laboratory study of the influence of scCO2 injection on metals migration, precipitation, and microbial growth. International Journal of Greenhouse Gas Control, 2016, 47, 71-85.	4.6	3
57	Combining phytoremediation with soil flushing for arsenic removal from contaminated soil. International Journal of Phytoremediation, 2018, 20, 1229-1235.	3.1	3
58	Analyses of Runoff and Sediment Transport and their Drivers in a Rare Earth Mine Drainage Basin of the Yangtze River, China. Water (Switzerland), 2020, 12, 2283.	2.7	3
59	Rheological Properties of Aqueous Colloidal Silica Suspensions Related to Amendment Delivery for Subsurface Remediation. Environmental Engineering Science, 2018, 35, 121-131.	1.6	2
60	Groundwater quality. Water Environment Research, 1998, 70, 807-895.	2.7	1
61	Foam: Novel Delivery Technology for Remediation of Vadose Zone Environments. , 2011, , .		1
62	Characterizing the Influence of Organic Polymers on the Specific Reactivity of Particulate Remedial Amendments. Frontiers in Environmental Science, 2021, 9, .	3.3	1
63	Groundwater Quality. Water Environment Research, 1999, 71, 973-1053.	2.7	0
64	Impact of Salinity on the Air–Water Partition Coefficient of Gas Tracers. Journal of Environmental Engineering, ASCE, 2005, 131, 1354-1357.	1.4	0
65	Advanced Remedial Methods for Metals and Radionuclides in Vadose Zone Environments. , 2010, , .		0