Iurii Cherniak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2532820/publications.pdf Version: 2024-02-01

LIDIL CHEDNIAK

#	Article	IF	CITATIONS
1	Dynamics of the highâ€latitude ionospheric irregularities during the 17 March 2015 St. Patrick's Day storm: Groundâ€based GPS measurements. Space Weather, 2015, 13, 585-597.	3.7	96
2	GPS and GLONASS observations of largeâ€scale traveling ionospheric disturbances during the 2015 St. Patrick's Day storm. Journal of Geophysical Research: Space Physics, 2016, 121, 12,138.	2.4	81
3	First observations of super plasma bubbles in Europe. Geophysical Research Letters, 2016, 43, 11,137.	4.0	74
4	ROTI Maps: a new IGS ionospheric product characterizing the ionospheric irregularities occurrence. GPS Solutions, 2018, 22, 1.	4.3	71
5	Observation of the ionospheric irregularities over the Northern Hemisphere: Methodology and service. Radio Science, 2014, 49, 653-662.	1.6	63
6	Vertical TEC representation by IRI 2012 and IRI Plas models for European midlatitudes. Advances in Space Research, 2015, 55, 2070-2076.	2.6	57
7	Ionospheric Total Electron Content Response to the Great American Solar Eclipse of 21 August 2017. Geophysical Research Letters, 2018, 45, 1199-1208.	4.0	54
8	GPS and in situ Swarm observations of the equatorial plasma density irregularities in the topside ionosphere. Earth, Planets and Space, 2016, 68, .	2.5	52
9	The global morphology of the plasmaspheric electron content during Northern winter 2009 based on GPS/COSMIC observation and GSM TIP model results. Advances in Space Research, 2015, 55, 2077-2085.	2.6	51
10	Plasmaspheric electron content derived from GPS TEC and FORMOSAT-3/COSMIC measurements: Solar minimum condition. Advances in Space Research, 2012, 50, 427-440.	2.6	49
11	High-latitude ionospheric irregularities: differences between ground- and space-based GPS measurements during the 2015 St. Patrick's Day storm. Earth, Planets and Space, 2016, 68, .	2.5	39
12	NeQuick and IRIâ€Plas model performance on topside electron content representation: Spaceborne GPS measurements. Radio Science, 2016, 51, 752-766.	1.6	36
13	Largeâ€Scale Traveling Ionospheric Disturbances Origin and Propagation: Case Study of the December 2015 Geomagnetic Storm. Space Weather, 2018, 16, 1377-1395.	3.7	36
14	Multiâ€Instrumental Observation of Stormâ€Induced Ionospheric Plasma Bubbles at Equatorial and Middle Latitudes. Journal of Geophysical Research: Space Physics, 2019, 124, 1491-1508.	2.4	36
15	Features of Stormâ€Induced Ionospheric Irregularities From Groundâ€Based and Spaceborne GPS Observations During the 2015 St. Patrick's Day Storm. Journal of Geophysical Research: Space Physics, 2019, 124, 10728-10748.	2.4	36
16	Dependence of the high-latitude plasma irregularities on the auroral activity indices: a case study of 17 March 2015 geomagnetic storm. Earth, Planets and Space, 2015, 67, .	2.5	35
17	New advantages of the combined GPS and GLONASS observations for high-latitude ionospheric irregularities monitoring: case study of June 2015 geomagnetic storm. Earth, Planets and Space, 2017, 69, .	2.5	35
18	Approaches for modeling ionosphere irregularities based on the TEC rate index. Earth, Planets and Space, 2014, 66, .	2.5	33

Iurii Cherniak

#	Article	IF	CITATIONS
19	Comparative study of foF2 measurements with IRI-2007 model predictions during extended solar minimum. Advances in Space Research, 2013, 51, 620-629.	2.6	32
20	Global View of Ionospheric Disturbance Impacts on Kinematic GPS Positioning Solutions During the 2015 St. Patrick's Day Storm. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027681.	2.4	32
21	Accuracy assessment of the quiet-time ionospheric F2 peak parameters as derived from COSMIC-2 multi-GNSS radio occultation measurements. Journal of Space Weather and Space Climate, 2021, 11, 18.	3.3	32
22	High latitude TEC fluctuations and irregularity oval during geomagnetic storms. Earth, Planets and Space, 2012, 64, 521-529.	2.5	27
23	How can GOCE and TerraSAR-X contribute to the topside ionosphere and plasmasphere research?. Space Weather, 2015, 13, 271-285.	3.7	26
24	Towards Cooperative Global Mapping of the Ionosphere: Fusion Feasibility for IGS and IRI with Global Climate VTEC Maps. Remote Sensing, 2020, 12, 3531.	4.0	25
25	Largeâ€Scale Ionospheric Disturbances During the 17 March 2015 Storm: A Modelâ€Data Comparative Study. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027726.	2.4	25
26	Early morning irregularities detected with spaceborne GPS measurements in the topside ionosphere: A multisatellite case study. Journal of Geophysical Research: Space Physics, 2015, 120, 8817-8834.	2.4	24
27	When Plasma Streams Tie up Equatorial Plasma Irregularities with Auroral Ones. Space Weather, 2020, 18, e2019SW002375.	3.7	24
28	Validation of FORMOSAT-3/COSMIC radio occultation electron density profiles by incoherent scatter radar data. Advances in Space Research, 2014, 53, 1304-1312.	2.6	23
29	Observation of the ionospheric storm of October 11, 2008 using FORMOSAT-3/COSMIC data. Earth, Planets and Space, 2012, 64, 505-512.	2.5	21
30	MONITOR Ionospheric Network: two case studies on scintillation and electron content variability. Annales Geophysicae, 2017, 35, 377-391.	1.6	20
31	The Persistent Ionospheric Responses Over Japan After the Impact of the 2011 Tohoku Earthquake. Space Weather, 2020, 18, e2019SW002302.	3.7	20
32	Effects of storm-induced equatorial plasma bubbles on GPS-based kinematic positioning at equatorial and middle latitudes during the September 7–8, 2017, geomagnetic storm. GPS Solutions, 2021, 25, 1.	4.3	19
33	Development of the Stormâ€Induced Ionospheric Irregularities at Equatorial and Middle Latitudes During the 25–26 August 2018 Geomagnetic Storm. Space Weather, 2022, 20, .	3.7	19
34	Mid-latitude Summer Evening Anomaly (MSEA) in F2 layer electron density and Total Electron Content at solar minimum. Advances in Space Research, 2015, 56, 1951-1960.	2.6	17
35	Evaluation of the IRI-2016 and NeQuick electron content specification by COSMIC GPS radio occultation, ground-based GPS and Jason-2 joint altimeter/GPS observations. Advances in Space Research, 2019, 63, 1845-1859.	2.6	17
36	Analysis of electron content variations over Japan during solar minimum: Observations and modeling. Advances in Space Research, 2013, 52, 1827-1836.	2.6	16

IURII CHERNIAK

#	Article	IF	CITATIONS
37	Climatology Characteristics of Ionospheric Irregularities Described with GNSS ROTI. Remote Sensing, 2020, 12, 2634.	4.0	16
38	Climatology of the Equatorial Plasma Bubbles Captured by FORMOSATâ€3/COSMIC. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027680.	2.4	16
39	Underutilized Spaceborne GPS Observations for Space Weather Monitoring. Space Weather, 2018, 16, 345-362.	3.7	13
40	Simulation and Observations of the Polar Tongue of Ionization at Different Heights During the 2015 St. Patrick's Day Storms. Space Weather, 2019, 17, 1073-1089.	3.7	13
41	Near-real time monitoring of the TEC fluctuations over the northern hemisphere using GNSS permanent networks. Advances in Space Research, 2013, 52, 391-402.	2.6	12
42	Observations of the Weddell Sea Anomaly in the ground-based and space-borne TEC measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 161, 105-117.	1.6	12
43	Processing and Validation of FORMOSATâ€7/COSMICâ€2 GPS Total Electron Content Observations. Radio Science, 2021, 56, e2021RS007267.	1.6	12
44	Use of total electron content maps for analysis of spatial-temporal structures of the ionosphere. Russian Journal of Physical Chemistry B, 2013, 7, 656-662.	1.3	9
45	Longitudinal variation in the ionosphereâ€plasmasphere system at the minimum of solar and geomagnetic activity: Investigation of temporal and latitudinal dependences. Radio Science, 2016, 51, 1864-1875.	1.6	9
46	Measurements of the ionosphere plasma electron density variation by the Kharkov incoherent scatter radar. Acta Geophysica, 2013, 61, 1289-1303.	2.0	8
47	Analysis of the ionosphere/plasmasphere electron content variability during strong geomagnetic storm. Advances in Space Research, 2014, 54, 586-594.	2.6	8
48	Accuracy of IRI profiles of ionospheric density and temperatures derived from comparisons to Kharkov incoherent scatter radar measurements. Advances in Space Research, 2013, 51, 639-646.	2.6	7
49	Cross-hemisphere comparison of mid-latitude ionospheric variability during 1996–2009: Juliusruh vs. Hobart. Advances in Space Research, 2014, 53, 175-189.	2.6	7
50	Coupling between parameters of Es layer and planetary waves during SSW 2008, 2010. Advances in Space Research, 2015, 56, 1886-1894.	2.6	4
51	ICS ROTI Maps: Current Status and Its Extension towards Equatorial Region and Southern Hemisphere. Sensors, 2022, 22, 3748.	3.8	4
52	The plasmasphere electron content estimation on the base of radio-measurements. , 2014, , .		3
53	Ground-Based GNSS and Satellite Observations of Auroral Ionospheric Irregularities during Geomagnetic Disturbances in August 2018. Sensors, 2021, 21, 7749.	3.8	3
54	The phase fluctuations of GPS signals at high latitudes during 7 January 2015 geomagnetic storm. , 2016, , .		1

#	Article	IF	CITATIONS
55	The First Atmospheric Radio Occultation Profiles From a GPS Receiver in Geostationary Orbit. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	1
56	Variation of pulsar signal received with the PL612 as an indicator of the ionosphere dynamics. , 2020, , .		0