
Liang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/253264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tectonic evolution and geodynamics of the Neo-Tethys Ocean. Science China Earth Sciences, 2022, 65, 1-24.	5.2	58
2	Opposite facing dipping structure in the uppermost mantle beneath the central Tien Shan from Pn traveltime tomography. International Journal of Earth Sciences, 2022, 111, 2571-2584.	1.8	2
3	Toward improved urban earthquake monitoring through deep-learning-based noise suppression. Science Advances, 2022, 8, eabl3564.	10.3	19
4	Novel Hybrid Numerical Simulation of the Wave Equation by Combining Physical and Numerical Representation Theorems and a Review of Hybrid Methodologies. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	2
5	The Role of Multiple Trapped Oceanic Basins in Continental Growth: Seismic Evidence From the Southern Altaids. Geophysical Research Letters, 2022, 49, .	4.0	12
6	Magmatic responses to Cretaceous subduction and tearing of the paleo-Pacific Plate in SE China: An overview. Earth-Science Reviews, 2021, 212, 103448.	9.1	45
7	Mixing of cogenetic magmas in the Cretaceous Zhangzhou calc-alkaline granite from southeast China recorded by in-situ apatite geochemistry. American Mineralogist, 2021, 106, 1679-1689.	1.9	12
8	Intrinsic non-uniqueness of the acoustic full waveform inverse problem. Geophysical Journal International, 2021, 226, 795-802.	2.4	9
9	Siamese Earthquake Transformer: A Pairâ€Input Deepâ€Learning Model for Earthquake Detection and Phase Picking on a Seismic Array. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021444.	3.4	29
10	3D Geodynamic Models for HPâ€UHP Rock Exhumation in Oppositeâ€Dip Double Subductionâ€Collision Systems. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022326.	3.4	5
11	Removing the Courant-Friedrichs-Lewy stability criterion of the explicit time-domain very high degree spectral-element method with eigenvalue perturbation. Geophysics, 2021, 86, T411-T419.	2.6	5
12	Mantle Flow Patterns Beneath the Junction of Multiple Subduction Systems Between the Pacific and Tethys Domains, SE Asia: Constraints From <i>SKS</i> â€Wave Splitting Measurements. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009700.	2.5	7
13	Subduction Polarity Reversal Triggered by Oceanic Plateau Accretion: Implications for Induced Subduction Initiation. Geophysical Research Letters, 2021, 48, e2021GL095299.	4.0	23
14	Efficiency of the spectral element method with very high polynomial degree to solve the elastic wave equation. Geophysics, 2020, 85, T33-T43.	2.6	11
15	Lower Crustal Rheology Controls the Development of Large Offset Strikeâ€Slip Faults During the Himalayanâ€Tibetan Orogeny. Geophysical Research Letters, 2020, 47, e2020GL089435.	4.0	20
16	Sharpness of the Midlithospheric Discontinuities and Craton Evolution in North China. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018594.	3.4	9
17	The Chinese Mars ROVER Fluxgate Magnetometers. Space Science Reviews, 2020, 216, 1.	8.1	20
18	Evidence for a serpentinized plate interface favouring continental subduction. Nature Communications, 2020, 11, 2171.	12.8	32

LIANG ZHAO

#	Article	IF	CITATIONS
19	New Crustal Vs Model Along an Array in Southâ€East China: Seismic Characters and Paleoâ€Tethys Continental Amalgamation. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009024.	2.5	11
20	Magmatic evolution and post-crystallization hydrothermal activity in the early Cretaceous Pingtan intrusive complex, SE China: records from apatite geochemistry. Contributions To Mineralogy and Petrology, 2020, 175, 1.	3.1	39
21	Imaging Karatungk Cu-Ni Mine in Xinjiang, Western China with a Passive Seismic Array. Minerals (Basel,) Tj ETQq1	1 0.7843 2.0	314 rgBT /O
22	Amagmatic Subduction Produced by Mantle Serpentinization and Oceanic Crust Delamination. Geophysical Research Letters, 2020, 47, e2019GL086257.	4.0	13
23	Effects of the Compositional Viscosity Ratio on the Longâ€Term Evolution of Thermochemical Reservoirs in the Deep Mantle. Geophysical Research Letters, 2019, 46, 9591-9601.	4.0	11
24	Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics. Science China Earth Sciences, 2019, 62, 2005-2016.	5.2	91
25	Nd-Hf-O isotopic evidence for subduction-induced crustal replacement in NE China. Chemical Geology, 2019, 525, 125-142.	3.3	19
26	3-D Pn tomography reveals continental subduction at the boundaries of the Adriatic microplate in the absence of a precursor oceanic slab. Earth and Planetary Science Letters, 2019, 510, 131-141.	4.4	21
27	Synchronous Periadriatic magmatism in the Western and Central Alps in the absence of slab breakoff. Terra Nova, 2019, 31, 120-128.	2.1	29
28	Mountain Building in Taiwan: Insights From 3â€Ð Geodynamic Models. Journal of Geophysical Research: Solid Earth, 2019, 124, 5924-5950.	3.4	7
29	Early Cretaceous subduction of Paleo-Pacific Ocean in the coastal region of SE China: Petrological and geochemical constraints from the mafic intrusions. Lithos, 2019, 334-335, 8-24.	1.4	47
30	Roles of Subducted Pelagic and Terrigenous Sediments in Early Jurassic Mafic Magmatism in NE China: Constraints on the Architecture of Paleoâ€Pacific Subduction Zone. Journal of Geophysical Research: Solid Earth, 2019, 124, 2525-2550.	3.4	52
31	Insights Into Layering in the Cratonic Lithosphere Beneath Western Australia. Journal of Geophysical Research: Solid Earth, 2018, 123, 1405-1418.	3.4	26
32	Lithospheric architecture of the South-Western Alps revealed by multiparameter teleseismic full-waveform inversion. Geophysical Journal International, 2018, 212, 1369-1388.	2.4	51
33	Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography. Tectonophysics, 2018, 731-732, 35-47.	2.2	32
34	Heterogeneous destruction of the North China Craton: Coupled constraints from seismology and geodynamic numerical modeling. Science China Earth Sciences, 2018, 61, 515-526.	5.2	8
35	Slab-triggered wet upwellings produce large volumes of melt: Insights into the destruction of the North China Craton. Tectonophysics, 2018, 746, 266-279.	2.2	23
36	Indication from finite-frequency tomography beneath the North China Craton: The heterogeneity of craton destruction. Science China Earth Sciences, 2018, 61, 1238-1260.	5.2	24

LIANG ZHAO

#	Article	IF	CITATIONS
37	Effects of Iron Spin Transition on the Structure and Stability of Large Primordial Reservoirs in Earth's Lower Mantle. Geophysical Research Letters, 2018, 45, 5918-5928.	4.0	5
38	Mantle wedge exhumation beneath the Dora-Maira (U)HP dome unravelled by local earthquake tomography (Western Alps). Lithos, 2018, 296-299, 623-636.	1.4	36
39	Geo-neutrino: Messenger from the Earth's interior. Chinese Science Bulletin, 2018, 63, 2853-2862.	0.7	0
40	Geodynamics of divergent double subduction: 3â€Ð numerical modeling of a Cenozoic example in the Molucca Sea region, Indonesia. Journal of Geophysical Research: Solid Earth, 2017, 122, 3977-3998.	3.4	47
41	Seismic probing of continental subduction zones. Journal of Asian Earth Sciences, 2017, 145, 37-45.	2.3	8
42	Earthquakes in the western Alpine mantle wedge. Gondwana Research, 2017, 44, 89-95.	6.0	25
43	Shear wave velocities in the upper mantle of the Western Alps: new constraints using array analysis of seismic surface waves. Geophysical Journal International, 2017, 210, 321-331.	2.4	21
44	Determining the key conditions for the formation of metamorphic core complexes by geodynamic modeling and insights into the destruction of North China Craton. Science China Earth Sciences, 2016, 59, 1873-1884.	5.2	7
45	Continuity of the Alpine slab unraveled by highâ€resolution <i>P</i> wave tomography. Journal of Geophysical Research: Solid Earth, 2016, 121, 8720-8737.	3.4	95
46	On velocity anomalies beneath southeastern China: An investigation combining mineral physics studies and seismic tomography observations. Gondwana Research, 2016, 31, 200-217.	6.0	7
47	Permian backâ€arc extension in central Inner Mongolia, NE China: Elemental and Sr–Nd–Pb–Hf–O isotopic constraints from the Linxi highâ€MgO diabase dikes. Island Arc, 2015, 24, 404-424.	1.1	18
48	Seismological constraints on the crustal structures generated by continental rejuvenation in northeastern China. Scientific Reports, 2015, 5, 14995.	3.3	41
49	An observation related to directional attenuation of SKS waves propagating in anisotropic media. Geophysical Journal International, 2015, 201, 276-290.	2.4	1
50	Early Jurassic subduction of the Paleo-Pacific Ocean in NE China: Petrologic and geochemical evidence from the Tumen mafic intrusive complex. Lithos, 2015, 224-225, 46-60.	1.4	178
51	Seismic evidence for an Iceland thermo-chemical plume in the Earth's lowermost mantle. Earth and Planetary Science Letters, 2015, 417, 19-27.	4.4	19
52	Formation of metamorphic core complexes in non-over-thickened continental crust: A case study of Liaodong Peninsula (East Asia). Lithos, 2015, 238, 86-100.	1.4	19
53	Selfâ€consistent subduction initiation induced by mantle flow. Terra Nova, 2015, 27, 130-138.	2.1	57
54	First seismic evidence for continental subduction beneath the Western Alps. Geology, 2015, 43, 815-818.	4.4	103

LIANG ZHAO

#	Article	IF	CITATIONS
55	Seismic imaging of crustal reworking and lithospheric modification in eastern China. Geophysical Journal International, 2014, 196, 656-670.	2.4	37
56	Strong intracontinental lithospheric deformation in South China: Implications from seismic observations and geodynamic modeling. Journal of Asian Earth Sciences, 2014, 86, 106-116.	2.3	15
57	Upper mantle seismic anisotropy beneath a convergent boundary: SKS waveform modeling in central Tibet. Science China Earth Sciences, 2014, 57, 759-776.	5.2	5
58	A metasomatized mantle wedge origin for low-l̂´ 180 olivine in late Cretaceous Junan and Qingdao basalts in the Sulu orogen. Science Bulletin, 2013, 58, 3903-3913.	1.7	9
59	Distinct upper mantle deformation of cratons in response to subduction: Constraints from SKS wave splitting measurements in eastern China. Gondwana Research, 2013, 23, 39-53.	6.0	75
60	Intralithospheric mantle structures recorded continental subduction. Journal of Geophysical Research, 2012, 117, .	3.3	29
61	Highâ€resolution body wave tomography models of the upper mantle beneath eastern China and the adjacent areas. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	105
62	Thermal localization as a potential mechanism to rift cratons. Physics of the Earth and Planetary Interiors, 2011, 186, 125-137.	1.9	26
63	No direct correlation of mantle flow beneath the North China Craton to the India-Eurasia collision: constraints from newâ€,SKSâ€,wave splitting measurements. Geophysical Journal International, 2011, 187, 1027-1037.	2.4	31
64	Mantle dynamics of the reactivating North China Craton: Constraints from the topographies of the 410-km and 660-km discontinuities. Science China Earth Sciences, 2011, 54, 881-887.	5.2	39
65	Crustal evolution of the Shiwandashan area in South China: Zircon U-Pb-Hf isotopic records from granulite enclaves in Indo-Sinian granites. Science Bulletin, 2010, 55, 2028-2038.	1.7	39
66	Sr–Nd–Pb isotope mapping of Mesozoic igneous rocks in NE China: Constraints on tectonic framework and Phanerozoic crustal growth. Lithos, 2010, 120, 563-578.	1.4	156
67	Mantle flow pattern and geodynamic cause of the North China Craton reactivation: Evidence from seismic anisotropy. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	50
68	Early Paleozoic subduction of the Paleo-Asian Ocean: Geochronological and geochemical evidence from the Dashizhai basalts, Inner Mongolia. Science in China Series D: Earth Sciences, 2009, 52, 940-951.	0.9	45
69	Reactivation of an Archean craton: Constraints from P―and Sâ€wave tomography in North China. Geophysical Research Letters, 2009, 36, .	4.0	90
70	New evidence from seismic imaging for subduction during assembly of the North China craton. Geology, 2009, 37, 395-398.	4.4	124
71	Insight into craton evolution: Constraints from shear wave splitting in the North China Craton. Physics of the Earth and Planetary Interiors, 2008, 168, 153-162.	1.9	34
72	Insight into the geodynamics of cratonic reactivation from seismic analysis of the crustâ€mantle boundary. Geophysical Research Letters, 2008, 35, .	4.0	43

Liang Zhao

#	Article	IF	CITATIONS
73	Insight into modification of North China Craton from seismological study in the Shandong Province. Geophysical Research Letters, 2008, 35, .	4.0	56
74	A twoâ€dimensional hybrid method for modeling seismic wave propagation in anisotropic media. Journal of Geophysical Research, 2008, 113, .	3.3	17
75	Geochemistry of Neogene sedimentary rocks from the Jiyang basin, North China Block: The roles of grain size and clay minerals. Geochemical Journal, 2008, 42, 381-402.	1.0	24
76	Crustal structure across the Yanshan belt at the northern margin of the North China Craton. Physics of the Earth and Planetary Interiors, 2007, 161, 36-49.	1.9	64
77	Shear wave splitting in eastern and central China: Implications for upper mantle deformation beneath continental margin. Physics of the Earth and Planetary Interiors, 2007, 162, 73-84.	1.9	51
78	Complex upper-mantle deformation beneath the North China Craton: implications for lithospheric thinning. Geophysical Journal International, 2007, 170, 1095-1099.	2.4	19
79	Using shear wave splitting measurements to investigate the upper mantle anisotropy beneath the North China Craton: Distinct variation from east to west. Geophysical Research Letters, 2005, 32, .	4.0	58
80	Calculation and Analysis of Sensitivity Field for Multiphase Flow Electromagnetic Tomography (EMT) In Well Logging. Chinese Journal of Geophysics, 2003, 46, 1251-1258.	0.2	2