List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2532245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathogenesis of Respiratory Viral and Fungal Coinfections. Clinical Microbiology Reviews, 2022, 35, e0009421.	5.7	64
2	A bacterial endosymbiont of the fungus Rhizopus microsporus drives phagocyte evasion and opportunistic virulence. Current Biology, 2022, 32, 1115-1130.e6.	1.8	22
3	The Rab32/BLOC-3–dependent pathway mediates host defense against different pathogens in human macrophages. Science Advances, 2021, 7, .	4.7	21
4	Red blood cell mannoses as phagocytic ligands mediating both sickle cell anaemia and malaria resistance. Nature Communications, 2021, 12, 1792.	5.8	16
5	Mitochondrial Reactive Oxygen Species Regulate Immune Responses of Macrophages to Aspergillus fumigatus. Frontiers in Immunology, 2021, 12, 641495.	2.2	17
6	Synthesis of the Fungal Metabolite YWA1 and Related Constructs as Tools to Study MelLec-Mediated Immune Response to <i>Aspergillus</i> Infections. Journal of Organic Chemistry, 2021, 86, 6044-6055.	1.7	3
7	MelLec Exacerbates the Pathogenesis of Aspergillus fumigatus-Induced Allergic Inflammation in Mice. Frontiers in Immunology, 2021, 12, 675702.	2.2	5
8	Characterization of antifungal Câ€ŧype lectin receptor expression on murine epithelial and endothelial cells in mucosal tissues. European Journal of Immunology, 2021, 51, 2341-2344.	1.6	4
9	Cross-presentation is getting DNGRous. Nature Immunology, 2021, 22, 108-110.	7.0	2
10	Quantifying Receptor-Mediated and to in Immune Cells. Methods in Molecular Biology, 2021, 2260, 155-178.	0.4	0
11	Managing the mycobiota with IgA. Nature Microbiology, 2021, 6, 1471-1472.	5.9	4
12	Complement-Mediated Differential Immune Response of Human Macrophages to Sporothrix Species Through Interaction With Their Cell Wall Peptidorhamnomannans. Frontiers in Immunology, 2021, 12, 749074.	2.2	9
13	T Cell Antifungal Immunity and the Role of C-Type Lectin Receptors. Trends in Immunology, 2020, 41, 61-76.	2.9	71
14	A Weakened Immune Response to Synthetic Exo-Peptides Predicts a Potential Biosecurity Risk in the Retrieval of Exo-Microorganisms. Microorganisms, 2020, 8, 1066.	1.6	1
15	The Role of RodA-Conserved Cysteine Residues in the Aspergillus fumigatus Conidial Surface Organization. Journal of Fungi (Basel, Switzerland), 2020, 6, 151.	1.5	9
16	Signaling C-Type Lectin Receptors in Antifungal Immunity. Current Topics in Microbiology and Immunology, 2020, 429, 63-101.	0.7	7
17	Phagosomal removal of fungal melanin reprograms macrophage metabolism to promote antifungal immunity. Nature Communications, 2020, 11, 2282.	5.8	68
18	PAMPs of the Fungal Cell Wall and Mammalian PRRs. Current Topics in Microbiology and Immunology, 2020, 425, 187-223.	0.7	29

#	Article	IF	CITATIONS
19	AIDS-Related Mycoses: Updated Progress and Future Priorities. Trends in Microbiology, 2020, 28, 425-428.	3.5	13
20	Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. PLoS Pathogens, 2020, 16, e1007927.	2.1	52
21	C-Type Lectin Receptors in Antifungal Immunity. Advances in Experimental Medicine and Biology, 2020, 1204, 1-30.	0.8	22
22	The pattern recognition receptors dectin-2, mincle, and FcRÎ ³ impact the dynamics of phagocytosis of Candida, Saccharomyces, Malassezia, and Mucor species. PLoS ONE, 2019, 14, e0220867.	1.1	21
23	The protective effect of inflammatory monocytes during systemic C. albicans infection is dependent on collaboration between C-type lectin-like receptors. PLoS Pathogens, 2019, 15, e1007850.	2.1	35
24	Câ€ŧype lectin receptors of the Dectinâ€1 cluster: Physiological roles and involvement in disease. European Journal of Immunology, 2019, 49, 2127-2133.	1.6	55
25	Microbiota Sensing by Mincle-Syk Axis in Dendritic Cells Regulates Interleukin-17 and -22 Production and Promotes Intestinal Barrier Integrity. Immunity, 2019, 50, 446-461.e9.	6.6	143
26	TLR4, but Neither Dectin-1 nor Dectin-2, Participates in the Mollusk Hemocyanin-Induced Proinflammatory Effects in Antigen-Presenting Cells From Mammals. Frontiers in Immunology, 2019, 10, 1136.	2.2	11
27	CARD9+ microglia promote antifungal immunity via IL-1β- and CXCL1-mediated neutrophil recruitment. Nature Immunology, 2019, 20, 559-570.	7.0	162
28	Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature, 2018, 555, 382-386.	13.7	157
29	Characterizing the Mechanisms of Nonopsonic Uptake of Cryptococci by Macrophages. Journal of Immunology, 2018, 200, 3539-3546.	0.4	36
30	Aspergillus-induced superoxide production by cystic fibrosis phagocytes is associated with disease severity. ERJ Open Research, 2018, 4, 00068-2017.	1.1	14
31	Sensing fungi at the oral epithelium. Nature Microbiology, 2018, 3, 4-5.	5.9	7
32	C-type lectins in immunity and homeostasis. Nature Reviews Immunology, 2018, 18, 374-389.	10.6	434
33	The CLEC12A receptor marks human basophils: Potential implications for minimal residual disease detection in acute myeloid leukemia. Cytometry Part B - Clinical Cytometry, 2018, 94, 520-526.	0.7	9
34	Hypoxia Promotes Immune Evasion by Triggering β-Glucan Masking on the Candida albicans Cell Surface via Mitochondrial and cAMP-Protein Kinase A Signaling. MBio, 2018, 9, .	1.8	105
35	Antifungal Innate Immunity: A Perspective from the Last 10 Years. Journal of Innate Immunity, 2018, 10, 373-397.	1.8	76
36	Dectin-1 Positive Dendritic Cells Expand after Infection with Leishmania major Parasites and Represent Promising Targets for Vaccine Development. Frontiers in Immunology, 2018, 9, 263.	2.2	16

#	Article	IF	CITATIONS
37	The Cryptococcus neoformans Titan cell is an inducible and regulated morphotype underlying pathogenesis. PLoS Pathogens, 2018, 14, e1006978.	2.1	137
38	<i>Candida albicans</i> Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions. MBio, 2017, 8, .	1.8	87
39	AIDS-Related Mycoses: Current Progress in the Field and Future Priorities. Trends in Microbiology, 2017, 25, 428-430.	3.5	16
40	Dectin-1 Activation Exacerbates Obesity and Insulin Resistance in the Absence of MyD88. Cell Reports, 2017, 19, 2272-2288.	2.9	36
41	Lactate signalling regulates fungal β-glucan masking and immune evasion. Nature Microbiology, 2017, 2, 16238.	5.9	197
42	Immunotherapeutic approaches to treatment of fungal diseases. Lancet Infectious Diseases, The, 2017, 17, e393-e402.	4.6	98
43	Pattern Recognition Receptors. , 2017, , 175-216.		2
44	Intestinal fungi contribute to development of alcoholic liver disease. Journal of Clinical Investigation, 2017, 127, 2829-2841.	3.9	336
45	Trimming Surface Sugars Protects <i>Histoplasma</i> from Immune Attack. MBio, 2016, 7, e00553-16.	1.8	7
46	Lectin Receptors Expressed on Myeloid Cells. Microbiology Spectrum, 2016, 4, .	1.2	48
47	Signalling through MyD88 drives surface expression of the mycobacterial receptors MCL (Clecsf8,) Tj ETQq1 1 0	.784314 r 1.0	gBT_{Overlock
48	Unravelling the relevance of CLEC12A as a cancer stem cell marker in myelodysplastic syndrome. British Journal of Haematology, 2016, 175, 393-401.	1.2	24
49	Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nature Medicine, 2016, 22, 906-914.	15.2	83
50	MICL controls inflammation in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2016, 75, 1386-1391.	0.5	40
51	Mycobacterial receptor, Clec4d (CLECSF8, MCL), is coregulated with Mincle and upregulated on mouse myeloid cells following microbial challenge. European Journal of Immunology, 2016, 46, 381-389.	1.6	34
52	Microbial Ligand Costimulation Drives Neutrophilic Steroid-Refractory Asthma. PLoS ONE, 2015, 10, e0134219.	1.1	34
53	Pathogenic Fungi Regulate Immunity by Inducing Neutrophilic Myeloid-Derived Suppressor Cells. Cell Host and Microbe, 2015, 17, 507-514.	5.1	99
54	Candida albicans Morphology and Dendritic Cell Subsets Determine T Helper Cell Differentiation. Immunity, 2015, 42, 356-366.	6.6	182

#	Article	IF	CITATIONS
55	The C-Type Lectin Receptor CLECSF8/CLEC4D Is a Key Component of Anti-Mycobacterial Immunity. Cell Host and Microbe, 2015, 17, 252-259.	5.1	100
56	C-type lectins in immunity: recent developments. Current Opinion in Immunology, 2015, 32, 21-27.	2.4	402
57	Murine pattern recognition receptor dectin-1 is essential in the development of experimental autoimmune uveoretinitis. Molecular Immunology, 2015, 67, 398-406.	1.0	15
58	Integrated Genomics of Crohn's Disease Risk Variant Identifies a Role for CLEC12A in Antibacterial Autophagy. Cell Reports, 2015, 11, 1905-1918.	2.9	45
59	Delinking CARD9 and IL-17: CARD9 Protects against <i>Candida tropicalis</i> Infection through a TNF-α–Dependent, IL-17–Independent Mechanism. Journal of Immunology, 2015, 195, 3781-3792.	0.4	38
60	Innate Defense against Fungal Pathogens. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019620.	2.9	74
61	CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway. PLoS Pathogens, 2015, 11, e1004985.	2.1	85
62	Cutting Edge: Failure of Antigen-Specific CD4+ T Cell Recruitment to the Kidney during Systemic Candidiasis. Journal of Immunology, 2014, 193, 5381-5385.	0.4	8
63	Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation. PLoS Pathogens, 2014, 10, e1004050.	2.1	215
64	Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends in Microbiology, 2014, 22, 614-622.	3.5	208
65	Role of Dectin-2 for Host Defense against Systemic Infection with Candida glabrata. Infection and Immunity, 2014, 82, 1064-1073.	1.0	100
66	A neglected epidemic: fungal infections in HIV/AIDS. Trends in Microbiology, 2014, 22, 120-127.	3.5	267
67	Topical Application of Imiquimod as a Treatment for Chromoblastomycosis. Clinical Infectious Diseases, 2014, 58, 1734-1737.	2.9	77
68	Signalling <scp>C</scp> â€Type lectin receptors, microbial recognition and immunity. Cellular Microbiology, 2014, 16, 185-194.	1.1	208
69	Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nature Immunology, 2014, 15, 1017-1025.	7.0	805
70	Dectin-1 Induces M1 Macrophages and Prominent Expansion of CD8+IL-17+ Cells in Pulmonary Paracoccidioidomycosis. Journal of Infectious Diseases, 2014, 210, 762-773.	1.9	73
71	C-Type Lectin-Like Receptors of the Dectin-1 Cluster: Ligands and Signaling Pathways. International Reviews of Immunology, 2013, 32, 134-156.	1.5	178
72	Differential Adaptation of Candida albicans In Vivo Modulates Immune Recognition by Dectin-1. PLoS Pathogens, 2013, 9, e1003315.	2.1	181

#	Article	IF	CITATIONS
73	The Dectin-2 family of C-type lectin-like receptors: an update. International Immunology, 2013, 25, 271-277.	1.8	156
74	Regiospecific Methylation of a Dietary Flavonoid Scaffold Selectively Enhances IL-1β Production following Toll-like Receptor 2 Stimulation in THP-1 Monocytes. Journal of Biological Chemistry, 2013, 288, 21126-21135.	1.6	14
75	Dectin-1-Dependent Interleukin-22 Contributes to Early Innate Lung Defense against Aspergillus fumigatus. Infection and Immunity, 2012, 80, 410-417.	1.0	115
76	The C-type Lectin Receptor CLECSF8 (CLEC4D) Is Expressed by Myeloid Cells and Triggers Cellular Activation through Syk Kinase. Journal of Biological Chemistry, 2012, 287, 25964-25974.	1.6	110
77	Dectin-1 Is Not Required for Controlling Candida albicans Colonization of the Gastrointestinal Tract. Infection and Immunity, 2012, 80, 4216-4222.	1.0	54
78	Hidden Killers: Human Fungal Infections. Science Translational Medicine, 2012, 4, 165rv13.	5.8	3,368
79	Interactions Between Commensal Fungi and the C-Type Lectin Receptor Dectin-1 Influence Colitis. Science, 2012, 336, 1314-1317.	6.0	886
80	The β-Glucan Receptor Dectin-1 Promotes Lung Immunopathology during Fungal Allergy via IL-22. Journal of Immunology, 2012, 189, 3653-3660.	0.4	117
81	Syk Kinase-Coupled C-type Lectin Receptors Engage Protein Kinase C-Î′ to Elicit Card9 Adaptor-Mediated Innate Immunity. Immunity, 2012, 36, 32-42.	6.6	249
82	Exciting Developments in the Immunology of Fungal Infections. Cell Host and Microbe, 2012, 11, 422-424.	5.1	32
83	Tackling Human Fungal Infections. Science, 2012, 336, 647-647.	6.0	531
84	Characterisation of Innate Fungal Recognition in the Lung. PLoS ONE, 2012, 7, e35675.	1.1	45
85	Innate Antifungal Immunity: The Key Role of Phagocytes. Annual Review of Immunology, 2011, 29, 1-21.	9.5	325
86	Syk-coupled C-type lectins in immunity. Trends in Immunology, 2011, 32, 151-156.	2.9	151
87	The role of Dectin-1 in the host defence against fungal infections. Current Opinion in Microbiology, 2011, 14, 392-399.	2.3	240
88	The role of Syk/CARD9 coupled Câ€ŧype lectins in antifungal immunity. European Journal of Immunology, 2011, 41, 276-281.	1.6	187
89	Fungal Recognition Enhances Mannose Receptor Shedding through Dectin-1 Engagement. Journal of Biological Chemistry, 2011, 286, 7822-7829.	1.6	53
90	HR and IT capabilities and complementarities in knowledge-intensive services. International Journal of Human Resource Management, 2010, 21, 2889-2909.	3.3	37

#	Article	IF	CITATIONS
91	How Fungi Have Shaped Our Understanding of Mammalian Immunology. Cell Host and Microbe, 2010, 7, 9-11.	5.1	16
92	Requisite Role for the Dectin-1 β-Glucan Receptor in Pulmonary Defense against <i>Aspergillus fumigatus</i> . Journal of Immunology, 2009, 182, 4938-4946.	0.4	365
93	Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. Journal of Experimental Medicine, 2009, 206, 2037-2051.	4.2	411
94	Early Stop Polymorphism in Human DECTINâ€1 Is Associated with Increased <i>Candida</i> Colonization in Hematopoietic Stem Cell Transplant Recipients. Clinical Infectious Diseases, 2009, 49, 724-732.	2.9	226
95	Reciprocal regulation of ILâ€23 and ILâ€12 following coâ€activation of Dectinâ€1 and TLR signaling pathways. European Journal of Immunology, 2009, 39, 1379-1386.	1.6	159
96	The Dectin-2 family of C-type lectins in immunity and homeostasis. Cytokine, 2009, 48, 148-155.	1.4	119
97	C-type lectins and phagocytosis. Immunobiology, 2009, 214, 562-575.	0.8	248
98	Human Dectin-1 Deficiency and Mucocutaneous Fungal Infections. New England Journal of Medicine, 2009, 361, 1760-1767.	13.9	671
99	Syk kinase is required for collaborative cytokine production induced through Dectinâ€1 and Tollâ€like receptors. European Journal of Immunology, 2008, 38, 500-506.	1.6	328
100	Sensing necrosis with Mincle. Nature Immunology, 2008, 9, 1099-1100.	7.0	34
101	Stage-Specific Sampling by Pattern Recognition Receptors during Candida albicans Phagocytosis. PLoS Pathogens, 2008, 4, e1000218.	2.1	110
102	Stimulation of dendritic cells via the dectin-1/Syk pathway allows priming of cytotoxic T-cell responses. Blood, 2008, 112, 4971-4980.	0.6	175
103	Macrophage Receptors and Innate Immunity: Insights from Dectin-1. Novartis Foundation Symposium, 2008, , 114-126.	1.2	4
104	Dectin-1 is required for \hat{l}^2 -glucan recognition and control of fungal infection. Nature Immunology, 2007, 8, 31-38.	7.0	1,042
105	Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nature Immunology, 2007, 8, 630-638.	7.0	1,070
106	Dectin-1: a signalling non-TLR pattern-recognition receptor. Nature Reviews Immunology, 2006, 6, 33-43.	10.6	982
107	Soluble Dectin-1 as a tool to detect β-glucans. Journal of Immunological Methods, 2006, 314, 164-169.	0.6	107
108	The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology, 2006, 16, 422-430.	1.3	327

GORDON D BROWN

#	Article	IF	CITATIONS
109	Expression of Functionally Different Dectin-1 Isoforms by Murine Macrophages. Journal of Immunology, 2006, 176, 5513-5518.	0.4	98
110	Macrophage receptors and innate immunity: insights from dectin-1. Novartis Foundation Symposium, 2006, 279, 114-23; discussion 123-6, 216-9.	1.2	2
111	Immune recognition of fungal β-glucans. Cellular Microbiology, 2005, 7, 471-479.	1.1	337
112	Dectin-2 is predominantly myeloid restricted and exhibits unique activation-dependent expression on maturing inflammatory monocytes elicitedin vivo. European Journal of Immunology, 2005, 35, 2163-2174.	1.6	122
113	The Beta-Glucan Receptor Dectin-1 Recognizes Specific Morphologies of Aspergillus fumigatus. PLoS Pathogens, 2005, 1, e42.	2.1	453
114	Syk-Dependent Cytokine Induction by Dectin-1 Reveals a Novel Pattern Recognition Pathway for C Type Lectins. Immunity, 2005, 22, 507-517.	6.6	815
115	Assessing communications effectiveness in meeting corporate goals of public health organizations. Journal of Health and Human Services Administration, 2005, 28, 159-88.	0.6	1
116	The Role of SIGNR1 and the β-Glucan Receptor (Dectin-1) in the Nonopsonic Recognition of Yeast by Specific Macrophages. Journal of Immunology, 2004, 172, 1157-1162.	0.4	183
117	Pattern recognition receptors and differentiation antigens define murine myeloid cell heterogeneity ex vivo. European Journal of Immunology, 2003, 33, 2090-2097.	1.6	111
118	Dectin-1 Mediates the Biological Effects of β-Glucans. Journal of Experimental Medicine, 2003, 197, 1119-1124.	4.2	1,084
119	Fungal β-Glucans and Mammalian Immunity. Immunity, 2003, 19, 311-315.	6.6	581
120	Alveolar Macrophage–mediated Killing of Pneumocystis carinii f. sp. muris Involves Molecular Recognition by the Dectin-1 β-Glucan Receptor. Journal of Experimental Medicine, 2003, 198, 1677-1688.	4.2	265
121	A rationale and training agenda for rehabilitation informatics: Roadmap for an emerging discipline. NeuroRehabilitation, 2003, 18, 159-170.	0.5	9
122	Dectin-1 Is A Major β-Glucan Receptor On Macrophages. Journal of Experimental Medicine, 2002, 196, 407-412.	4.2	902
123	A new receptor for β-glucans. Nature, 2001, 413, 36-37.	13.7	1,442
124	Phagocytes and Anti-Infective Immunity. , 0, , 77-91.		2
125	Interaction of Candida albicans with Phagocytes. , 0, , 437-P1.		0

126 Innate Recognition of Aspergillus fumigatus by the Mammalian Immune System. , 0, , 279-289.

0