Arturo Ponce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/253224/publications.pdf

Version: 2024-02-01

168 papers 4,913 citations

186265
28
h-index

98798 67 g-index

173 all docs

173 docs citations

173 times ranked

8062 citing authors

#	Article	IF	CITATIONS
1	Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science, 2015, 350, 1513-1516.	12.6	2,047
2	Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived MoS ₂ . ACS Nano, 2014, 8, 10551-10558.	14.6	281
3	The Structure and Properties of Amorphous Indium Oxide. Chemistry of Materials, 2014, 26, 5401-5411.	6.7	179
4	Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted density gradient ultracentrifugation. Nature Communications, 2014, 5, 5478.	12.8	126
5	STEM Electron Diffraction and High-Resolution Images Used in the Determination of the Crystal Structure of the Au ₁₄₄ (SR) ₆₀ Cluster. Journal of Physical Chemistry Letters, 2013, 4, 975-981.	4.6	122
6	High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer's disease. Scientific Reports, 2016, 6, 24873.	3.3	103
7	High Efficiency Hybrid Silicon Nanopillar–Polymer Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 9620-9627.	8.0	102
8	Structure of the Thiolated Au ₁₃₀ Cluster. Journal of Physical Chemistry A, 2013, 117, 10470-10476.	2.5	64
9	Analysis of electron beam damage of exfoliated MoS2 sheets and quantitative HAADF-STEM imaging. Ultramicroscopy, 2014, 146, 33-38.	1.9	63
10	Experimental Evidence of Icosahedral and Decahedral Packing in One-Dimensional Nanostructures. ACS Nano, 2011, 5, 6272-6278.	14.6	61
11	Elasticity of MoS ₂ Sheets by Mechanical Deformation Observed by in Situ Electron Microscopy. Journal of Physical Chemistry C, 2015, 119, 710-715.	3.1	59
12	New insights into the properties and interactions of carbon chains as revealed by HRTEM and DFT analysis. Carbon, 2014, 66, 436-441.	10.3	58
13	Strain-release mechanisms in bimetallic core–shell nanoparticles as revealed by Cs-corrected STEM. Surface Science, 2013, 609, 161-166.	1.9	56
14	Electroplating and magnetostructural characterization of multisegmented Co54Ni46/Co85Ni15 nanowires from single electrochemical bath in anodic alumina templates. Nanoscale Research Letters, 2013, 8, 263.	5.7	54
15	Morphological, compositional, structural, and optical properties of Si-nc embedded in SiO x films. Nanoscale Research Letters, 2012, 7, 604.	5.7	49
16	Strong white and blue photoluminescence from silicon nanocrystals in SiNxgrown by remote PECVD using SiCl4/NH3. Nanotechnology, 2007, 18, 155704.	2.6	48
17	Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages. Metallomics, 2013, 5, 242.	2.4	48
18	Highâ€Concentration Aqueous Dispersions of Nanoscale 2D Materials Using Nonionic, Biocompatible Block Copolymers. Small, 2016, 12, 294-300.	10.0	47

#	Article	IF	Citations
19	Harvesting single ferroelectric domain stressed nanoparticles for optical and ferroic applications. Journal of Applied Physics, 2010, 108, .	2.5	45
20	Trimetallic nanostructures: the case of AgPd–Pt multiply twinned nanoparticles. Nanoscale, 2013, 5, 12456.	5.6	44
21	Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques. Integrative Biology (United Kingdom), 2012, 4, 1358.	1.3	41
22	Size control of InAsâ^•InP(001) quantum wires by tailoring Pâ^•As exchange. Applied Physics Letters, 2004, 85, 1424-1426.	3.3	38
23	Atomic Resolution Imaging of Polyhedral PtPd Core–Shell Nanoparticles by Cs-Corrected STEM. Journal of Physical Chemistry C, 2012, 116, 23596-23602.	3.1	37
24	On the Influence of Silver Nanoparticles Size in the Electrical Conductivity of PEDOT: PSS. Materials Science Forum, 0, 644, 85-90.	0.3	36
25	Study on the photocatalytic activity of titanium dioxide nanostructures: Nanoparticles, nanotubes and ultra-thin films. Catalysis Today, 2020, 341, 2-12.	4.4	35
26	Structure and catalytic properties of hexagonal molybdenum disulfide nanoplates. Catalysis Science and Technology, 2011, 1, 1024.	4.1	34
27	Mapping the magnetic and crystal structure in cobalt nanowires. Journal of Applied Physics, 2015, 118, 024302.	2.5	34
28	Complex Three-Dimensional Magnetic Ordering in Segmented Nanowire Arrays. ACS Nano, 2017, 11, 8311-8319.	14.6	34
29	Stacking of InAs/InP(001) quantum wires studied by in situ stress measurements: Role of inhomogeneous stress fields. Applied Physics Letters, 2004, 84, 4723-4725.	3.3	31
30	Polymorphous silicon thin films obtained by plasma-enhanced chemical vapor deposition using dichlorosilane as silicon precursor. Nanotechnology, 2009, 20, 245604.	2.6	27
31	Size-filtering effects by stacking InAs/InP (001) self-assembled quantum wires into multilayers. Physical Review B, 2002, 65, .	3.2	25
32	Excitons in coupledInAsâ^•InPself-assembled quantum wires. Physical Review B, 2007, 75, .	3.2	25
33	Structure and composition of Au/Co magneto-plasmonic nanoparticles. MRS Communications, 2013, 3, 177-183.	1.8	25
34	<i>In situ</i> TEM study of mechanical behaviour of twinned nanoparticles. Philosophical Magazine, 2012, 92, 4437-4453.	1.6	24
35	Scanning Transmission Electron Microscopy Methods for the Analysis of Nanoparticles. Methods in Molecular Biology, 2012, 906, 453-471.	0.9	24
36	CuS ₂ -Passivated Au-Core, Au ₃ Cu-Shell Nanoparticles Analyzed by Atomistic-Resolution Cs-Corrected STEM. Langmuir, 2013, 29, 9231-9239.	3.5	24

#	Article	IF	CITATIONS
37	Origin and shape evolution of core–shell nanoparticles in Au–Pd: from few atoms to high Miller index facets. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	22
38	Bi ₂ O ₃ nano-flakes as a cost-effective antibacterial agent. Nanoscale Advances, 2021, 3, 4106-4118.	4.6	21
39	Surface Modification of Nanoclays by Plasma Polymerization of Ethylene. Plasma Processes and Polymers, 2011, 8, 842-849.	3.0	20
40	Synthesis, optical and structural properties of sanidic liquid crystal (cholesteryl)benzoate-ethynylene oligomers and polymer. Journal of Materials Chemistry, 2012, 22, 3770.	6.7	20
41	Synthesis, Mass Spectrometry, and Atomic Structural Analysis of Au _{â^1/42000} (SR) _{â^1/4290} Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 26733-26738.	3.1	20
42	Mechanosynthesis of lanthanum manganite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 454-455, 69-74.	5 . 6	19
43	TEM Examination of MWCNTs Oxidized by Mild Experimental Conditions. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 49-55.	2.1	19
44	Structural Analysis of Ligand-Protected Smaller Metallic Nanocrystals by Atomic Pair Distribution Function under Precession Electron Diffraction. Journal of Physical Chemistry C, 2019, 123, 19894-19902.	3.1	19
45	Crystalline and narrow band gap semiconductor BaZrO3: Bi–Si synthesized by microwave–hydrothermal synthesis. Catalysis Today, 2015, 250, 95-101.	4.4	18
46	A stable multiply twinned decahedral gold nanoparticle with a barrel-like shape. Surface Science, 2016, 644, 80-85.	1.9	18
47	Magnetic ordering in 45 nm-diameter multisegmented FeGa/Cu nanowires: single nanowires and arrays. Journal of Materials Chemistry C, 2017, 5, 7546-7552.	5.5	18
48	Precession electron diffractionâ€assisted crystal phase mapping of metastable câ€GaN films grown on (001) GaAs. Microscopy Research and Technique, 2014, 77, 980-985.	2.2	17
49	In situ transmission electron microscopy mechanical deformation and fracture of a silver nanowire. Scripta Materialia, 2016, 113, 63-67.	5. 2	17
50	Photoluminescence properties of SiNx/Si amorphous multilayer structures grown by plasma-enhanced chemical vapor deposition. Journal of Luminescence, 2006, 121, 349-352.	3.1	16
51	Quantitative magnetometry analysis and structural characterization of multisegmented cobalt–nickel nanowires. Journal of Magnetism and Magnetic Materials, 2015, 379, 294-299.	2.3	16
52	The Evolution of Growth, Crystal Orientation, and Grain Boundaries Disorientation Distribution in Gold Thin Films. Crystal Research and Technology, 2018, 53, 1800038.	1.3	16
53	Chemical Modification of Carbon Nanofibers with Plasma of Acrylic Acid. Plasma Processes and Polymers, 2013, 10, 627-633.	3.0	15
54	As4 overpressure effects on the phase purity of cubic GaN layers grown on GaAs substrates by RF-MBE. Applied Surface Science, 2015, 353, 588-593.	6.1	15

#	Article	IF	CITATIONS
55	Fabrication of Microbolometer Arrays Based on Polymorphous Silicon–Germanium. Sensors, 2020, 20, 2716.	3.8	15
56	Fivefold annealing twin in nanocrystalline Au/Pd film. Materials Letters, 2019, 244, 88-91.	2.6	14
57	Toward Smaller Aqueous-Phase Plasmonic Gold Nanoparticles: High-Stability Thiolate-Protected â^1/44.5 nm Cores. Langmuir, 2019, 35, 10610-10617.	3.5	13
58	Advances in the electron diffraction characterization of atomic clusters and nanoparticles. Nanoscale Advances, 2021, 3, 311-325.	4.6	13
59	Emission wavelength engineering of InAs/InP(001) quantum wires. European Physical Journal B, 2004, 40, 433-437.	1.5	12
60	Direct observation of liquid-like behavior of a single Au grain boundary. Nanoscale, 2013, 5, 6333.	5.6	12
61	SERS and integrative imaging upon internalization of quantum dots into human oral epithelial cells. Journal of Biophotonics, 2016, 9, 683-693.	2.3	12
62	Structural analysis of the epitaxial interface Ag/ZnO in hierarchical nanoantennas. Applied Physics Letters, 2016, 109, 153104.	3.3	12
63	Structure Determination of Superatom Metallic Clusters Using Rapid Scanning Electron Diffraction. Journal of Physical Chemistry C, 2016, 120, 1902-1908.	3.1	12
64	Calibration for medium resolution off-axis electron holography using a flexible dual-lens imaging system in a JEOL ARM 200F microscope. Ultramicroscopy, 2014, 147, 44-50.	1.9	11
65	Deposition, opto-electronic and structural characterization of polymorphous silicon thin films to be applied in a solar cell structure. Materials Science in Semiconductor Processing, 2015, 30, 85-91.	4.0	11
66	Misorientation dependence grain boundary complexions in <111> symmetric tilt Al grain boundaries. Acta Materialia, 2019, 181, 216-227.	7.9	11
67	Structural and optical properties of GaN thin films grown on Al2O3 substrates by MOCVD at different reactor pressures. Applied Surface Science, 2011, 258, 1267-1271.	6.1	10
68	Fluorescent core-sheath fibers by electrospinning of a phenyleneethynylene/poly(styrene-co-maleimide) blend. Polymer, 2011, 52, 5326-5334.	3.8	10
69	Nanodomain induced anomalous magnetic and electronic transport properties of LaBaCo2O5.5+δ highly epitaxial thin films. Journal of Applied Physics, 2014, 115, 024301.	2.5	10
70	Structure and Optical Properties of Silicon Nanocrystals Embedded in Amorphous Silicon Thin Films Obtained by PECVD. Journal of Nanomaterials, 2011, 2011, 1-9.	2.7	9
71	Determination of the surface morphology of gold-decahedra nanoparticles using an off-axis electron holography dual-lens imaging system. Micron, 2013, 54-55, 82-86.	2.2	9
72	Electric radiation mapping of silver/zinc oxide nanoantennas by using electron holography. Journal of Applied Physics, 2015, 117, 034306.	2.5	9

#	Article	IF	CITATIONS
73	High Reflectivity AlGaN/AlN DBR Mirrors Grown by PA-MBE. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 258-262.	0.8	8
74	Changing the Surface Characteristics of CNF, from Hydrophobic to Hydrophilic, via Plasma Polymerization with Acrylic Acid. Journal of Nano Research, 0, 9, 45-53.	0.8	8
75	Synthesis of Magnetic CuNi Nanoalloys by Sol-Gel-Based Pechini Method. IEEE Transactions on Magnetics, 2013, 49, 4522-4524.	2.1	8
76	Structural order in ultrathin films of the monolayer protected clusters based upon 4 nm gold nanocrystals: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2014, 16, 18098-18104.	2.8	8
77	Structural and Optical Properties of SiOx Films Deposited by HFCVD. Procedia Engineering, 2011, 25, 304-308.	1.2	7
78	Towards high efficiency multi-junction solar cells grown on InP Substrates. , 2013, , .		7
79	SERS-active Au/SiO_2 clouds in powder for rapid ex vivo breast adenocarcinoma diagnosis. Biomedical Optics Express, 2016, 7, 2407.	2.9	7
80	In-situ magnetization/heating electron holography to study the magnetic ordering in arrays of nickel metallic nanowires. AIP Advances, 2018, 8, 056813.	1.3	7
81	Effects of heavy Si doping on the structural and optical properties of n-GaN/AlN/Si(111) heterostructures. Materials Research Express, 0, , .	1.6	7
82	Calcium Carbonate Crystal Shapes Mediated by Intramineral Proteins from Eggshells of Ratite Birds and Crocodiles. Implications to the Eggshell's Formation of a Dinosaur of 70 Million Years Old. Crystal Growth and Design, 2018, 18, 5663-5673.	3.0	6
83	Atomic-Scale Structural Analysis of Homoepitaxial LaF ₃ :Yb,Tm Core–Shell Upconversion Nanoparticles Synthesized through a Microwave Route. Crystal Growth and Design, 2020, 20, 2153-2163.	3.0	6
84	HRTEM study of AlxGa1â^'xN/AlN DBR mirrors. Diamond and Related Materials, 2003, 12, 1178-1181.	3.9	5
85	Electrical and optical properties of C46H22N8O4KM (MCo, Fe, Pb) molecular-material thin films prepared by the vacuum thermal evaporation technique. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 66, 561-567.	3.9	5
86	Structural evolution of nanocrystalline silicon studied by high resolution transmission electron microscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1458-1461.	0.8	5
87	Variation in the structure and optical properties of polymorphous silicon thin films using dichlorosilane as silicon precursor. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 850-853.	0.8	5
88	Structural Analysis of AuPdAu Nanocubes via Aberration-Corrected STEM and Nanobeam Diffraction. Journal of Physical Chemistry C, 2015, 119, 24621-24626.	3.1	5
89	Structural damage reduction in protected gold clusters by electron diffraction methods. Advanced Structural and Chemical Imaging, 2016, 2, 12.	4.0	5
90	Size distribution and visible luminescence of silicon nanoparticles embedded in SiN <i>x</i> thin film: Role of RF power in PECVD. Functional Materials Letters, 2017, 10, 1750014.	1.2	5

#	Article	IF	CITATIONS
91	Evaporation of Gold on NaCl Surfaces as a Way To Control Spatial Distribution of Nanoparticles: Insights on the Shape and Crystallographic Orientation. Crystal Growth and Design, 2017, 17, 6062-6070.	3.0	5
92	Prominence of fusion temperature and engineering heteroatoms on multifarious emissive shifts in carbon dots. Journal of Colloid and Interface Science, 2018, 528, 237-247.	9.4	5
93	Gate modeling of metal–insulator–semiconductor devices based on ultra-thin atomic-layer deposited TiO2. Journal of Materials Science: Materials in Electronics, 2018, 29, 15761-15769.	2.2	5
94	Tribological performance of TiN and TiCN coatings on a working tool steel. Journal of Mechanical Science and Technology, 2018, 32, 3659-3666.	1.5	5
95	Synthesis and Characterization of Alloys and Bimetallic Nanoparticles of CuNi Prepared by Sol-Gel Method. Materials Research Society Symposia Proceedings, 2012, 1479, 9-14.	0.1	4
96	Silver/zinc oxide self-assembled nanostructured bolometer. Infrared Physics and Technology, 2017, 81, 266-270.	2.9	4
97	Nanowire Y-junction formation during self-faceting on high-index GaAs substrates. RSC Advances, 2017, 7, 17813-17818.	3.6	4
98	Controlling the Number of Atoms on Catalytic Metallic Clusters. Studies in Surface Science and Catalysis, 2017, , 185-220.	1.5	4
99	Surface structural characteristics of some colloidal lipid systems used in pharmaceutics. Journal of Drug Delivery Science and Technology, 2021, 62, 102345.	3.0	4
100	Low-defect-density ZnO homoepitaxial films grown by low-temperature ALD. Applied Physics Letters, 2021, 119, .	3.3	4
101	N+BF 2 and N+C+BF 2 high-dose co-implantation in silicon. Applied Physics A: Materials Science and Processing, 2003, 76, 791-800.	2.3	3
102	Size self-filtering effect in vertical stacks of InAs/InP self-assembled quantum wires. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 174-176.	2.7	3
103	Transmission electron microscopy study of simultaneous high-dose C++N+ co-implantation into (111)Si. Thin Solid Films, 2003, 426, 16-30.	1.8	3
104	Experimental techniques for structural characterization., 2013,, 113-145.		3
105	Kinematics of gold nanoparticles manipulation in situ transmission electron microscopy. Journal of Nanoparticle Research, 2015, 17 , 1 .	1.9	3
106	Resonance properties of Ag-ZnO nanostructures at terahertz frequencies. Optics Express, 2015, 23, 25111.	3.4	3
107	High cubic phase purity and growth mechanism of cubic InN thin-films by Migration Enhanced Epitaxy. Thin Solid Films, 2018, 647, 64-69.	1.8	3
108	Semiconductor behavior of pentagonal silver nanowires measured under mechanical deformation. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	3

#	ARTICLE Strong spin-orbit interactions in a correlated two-dimensional electron system formed in symplemath	IF	CITATIONS
	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>SrTi</mml:mi><mml:msub><mml:mathvariant="normal">O<mml:mn>3</mml:mn></mml:mathvariant="normal"></mml:msub><mml:mrow><mml:mo>(</mml:mo><nfilms <mml:math<="" epitaxially="" grown="" on="" td=""><td>mi omlima v 00</td><td>11 / mml·mn</td></nfilms></mml:mrow></mml:mrow>	mi omlima v 00	11 / mml·mn
109	films grown epitaxially on <mml:math< td=""><td>11111.11111200</td><td>117/1111111.11111</td></mml:math<>	11111.11111200	117/1111111.11111

#	Article	IF	CITATIONS
127	On the Weak Forces on Nanoparticles. Microscopy and Microanalysis, 2015, 21, 955-956.	0.4	1
128	Fast Scanning Electron Diffraction and Electron Holography as Methods to Acquire Structural Information on Au102(p-MBA)44 Nanoclusters. Microscopy and Microanalysis, 2016, 22, 528-529.	0.4	1
129	Morphology visualization of irregular shape bacteria by electron holography and tomography. Microscopy Research and Technique, 2017, 80, 1249-1255.	2.2	1
130	Microstructural Analysis of Polycrystalline Er:YAG using Automated Crystal Orientation Mapping. Microscopy and Microanalysis, 2018, 24, 218-219.	0.4	1
131	High Curie temperature CoSi nanowires by Mn-doping. Journal of Applied Physics, 2018, 124, .	2.5	1
132	Resonant tunneling MIIIS diode based on intrinsic quantum-well formation of ultra-thin atomic layered films after band-offset engineering. Applied Surface Science, 2018, 458, 166-171.	6.1	1
133	Study of Vortex State in Permalloy Plates Using Optimized Electron Holography. Microscopy and Microanalysis, 2018, 24, 952-953.	0.4	1
134	Synergistic photoluminescent interaction of Si and CdTe quantum dots. Microsystem Technologies, 2019, , 1.	2.0	1
135	Alloying and Annealing Effects on Grain Boundary Character Evolution of Al-alloy 7075 Thin Films: An ACOM-TEM Analysis. Minerals, Metals and Materials Series, 2019, , 109-119.	0.4	1
136	Transmission Electron Microscopy of Multimetallic Nanoparticles. , 2020, , 33-74.		1
137	In-Situ Magnetization Reversal Mechanism in Ni Nanowires Investigated by Electron Holography. Microscopy and Microanalysis, 2021, 27, 330-332.	0.4	1
138	Mapping the magnetic and crystal structure in cobalt nanowires. , 0, .		1
139	Magnetic Vortex Domain Wall Observation on Polycrystalline Imperfect Ironâ€Cobalt Alloy Nanowires Growing on 1050 Aluminum. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100265.	1.8	1
140	On the Mechanism Controlling the Relative Orientation of Graphene Bi-Layers. Symmetry, 2022, 14, 719.	2.2	1
141	Filtering Study of Threading Dislocations in AlN Buffered MBE GaN/Sapphire Using Single and Multiple High Temperature AlN Intermediate Layers. Physica Status Solidi A, 2002, 192, 424-429.	1.7	0
142	Structural Study of GaN Layers Grown on Carbonized Si(111) Substrates. Materials Science Forum, 2003, 433-436, 1003-0.	0.3	0
143	Crystalline Inclusions Formed in C+N+BF 2 Coimplanted on Silicon (111). Mikrochimica Acta, 2004, 145, 165-169.	5.0	О
144	Nanocoating on Carbon Nanofibers by Plasma Polymerization of Ethylene Gas. Materials Research Society Symposia Proceedings, 2009, 1204, 1.	0.1	0

#	Article	IF	CITATIONS
145	Nanosilicon Crystallite Embedded into Amorphous Silicon Matrix: Polymorphous SiliconThin Film, Obtained by Plasma Enhanced Chemical Vapor Deposition. Microscopy and Microanalysis, 2009, 15, 1258-1259.	0.4	O
146	Structural Characterization of Poly(Sodium 4-Styrene Sulfonate)/CdS Semiconductor Nanoparticle Composites. Materials Science Forum, 0, 644, 123-127.	0.3	0
147	Elemental Analysis of a Heterogeneous Polymeric System by EDS: Detection of the Compatibilizer Agent Containing Si Atoms and Silver Nano-Particles (AgNP´s) in High Impact Polystyrene. Materials Science Forum, 2010, 644, 21-24.	0.3	O
148	Atomic Resolution in MoS2 Few Layered using Cs-corrected STEM at 80 kV. Microscopy and Microanalysis, 2012, 18, 1440-1441.	0.4	0
149	Twinned Nanoparticles Combine High Strength with High Malleability. Microscopy and Microanalysis, 2012, 18, 748-749.	0.4	0
150	Characterization of heteroepitaxial multiferroic interface BiFeO3/SrTiO3/Si by Cs-corrected STEM. Microscopy and Microanalysis, 2012, 18, 1448-1449.	0.4	0
151	Study of Core-Shell Au-Pd Nanocubes. Microscopy and Microanalysis, 2012, 18, 1754-1755.	0.4	0
152	Characterization of Metallic and Bimetallic Nanoparticles by Off-Axis Electron Holography. Microscopy and Microanalysis, 2014, 20, 290-291.	0.4	0
153	Study of Au/Pd and Au/Co Bimetallic Nanoparticles Using Aberration Corrected STEM. Microscopy and Microanalysis, 2014, 20, 884-885.	0.4	0
154	Crystal orientation mapping on metallic nanoparticles by electron diffraction methods. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s376-s376.	0.1	0
155	TEM In situ Plastic Deformation of Silver Nanowires. Microscopy and Microanalysis, 2015, 21, 941-942.	0.4	0
156	Precession Electron Diffraction and Orientation Phase Mapping of Assembled Ag/ZnO Nanoantennas. Microscopy and Microanalysis, 2015, 21, 1461-1462.	0.4	0
157	Crystalline Phase Mapping Associated to the Magnetic Flux in Cobalt Nanowires. Microscopy and Microanalysis, 2015, 21, 1971-1972.	0.4	0
158	Electrical Probing of Silver Nanowires in situ Transmission Electron Microscopy. Microscopy and Microanalysis, 2016, 22, 834-835.	0.4	0
159	Nano-manipulation of Ag/ZnO Nanoantennas for in-situ TEM Electrical Measurements. Microscopy and Microanalysis, $2016, 22, 842-843$.	0.4	0
160	Controlled Magnetization by Electron Holography of Polycrystalline Cobalt Nanowires. Microscopy and Microanalysis, 2016, 22, 1694-1695.	0.4	0
161	Phase Identification of III-N Thin Films Grown by Molecular Beam Epitaxy and Migration Enhanced Epitaxy using Precession Electron Diffraction. Microscopy and Microanalysis, 2017, 23, 1484-1485.	0.4	0
162	Gold Palladium Thin Films: Multi-twinned Nanoparticles to Five-fold Annealing Twins. Microscopy and Microanalysis, 2019, 25, 2344-2345.	0.4	0

ARTURO PONCE

#	Article	IF	CITATIONS
163	An Automated V-I Acquisition System for Microbolometer Array with FPGA-based Drive. , 2021, , .		O
164	Structural defects in ZnO thin films grown by atomic layer deposition at low temperatures. Microscopy and Microanalysis, 2021, 27, 2660-2662.	0.4	0
165	Improved Holographic Beam Coupling Through Selective Harvesting of Single Domain Ferroelectric Nanoparticles. , 2010, , .		0
166	Comparison of the thickness determined by Fresnel contrast and Rutherford backscattering spectrometry in ultra-thin layers., 2018,, 305-308.		0
167	Misorientation Dependence Grain Boundary Complexions in Al Alloy Thin Films. SSRN Electronic Journal, 0, , .	0.4	0
168	Large Dataset Electron Diffraction Patterns for the Structural Analysis of Metallic Nanostructures. , 2020, , 111-146.		0