Hai-Yang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2532034/publications.pdf

Version: 2024-02-01

		218677	2	243625
58	2,068 citations	26		44
papers	citations	h-index		g-index
58	58	58		2451
30	30	30		2 (31
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Synthesis of urea derivatives from amines and CO2 in the absence of catalyst and solvent. Green Chemistry, 2010, 12, 1811.	9.0	144
2	Selective hydrogenation of nitrobenzene to aniline in dense phase carbon dioxide over Ni/ \hat{l}^3 -Al2O3: Significance of molecular interactions. Journal of Catalysis, 2009, 264, 1-10.	6.2	138
3	High performance of Ir-promoted Ni/TiO2 catalyst toward the selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2013, 303, 110-116.	6.2	132
4	Selective hydrogenation of chloronitrobenzene to chloroaniline in supercritical carbon dioxide over Ni/TiO2: Significance of molecular interactions. Journal of Catalysis, 2010, 269, 131-139.	6.2	92
5	Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst. Green Chemistry, 2011, 13, 839.	9.0	80
6	A self-healing and recyclable polyurethane-urea Diels–Alder adduct synthesized from carbon dioxide and furfuryl amine. Green Chemistry, 2021, 23, 552-560.	9.0	76
7	Polyureas from diamines and carbon dioxide: synthesis, structures and properties. Physical Chemistry Chemical Physics, 2012, 14, 464-468.	2.8	72
8	Selective conversion of microcrystalline cellulose into hexitols on nickel particles encapsulated within ZSM-5 zeolite. Green Chemistry, 2012, 14, 2146.	9.0	67
9	Metal-free catalytic conversion of CO ₂ and glycerol to glycerol carbonate. Green Chemistry, 2017, 19, 1775-1781.	9.0	64
10	Colorless polyimides derived from 2R,5R,7S,10S-naphthanetetracarboxylic dianhydride. Polymer Chemistry, 2017, 8, 6165-6172.	3.9	62
11	Highly selective Pt/ordered mesoporous TiO 2 –SiO 2 catalysts for hydrogenation of cinnamaldehyde: The promoting role of Ti 2+. Journal of Colloid and Interface Science, 2016, 463, 75-82.	9.4	58
12	Selective reduction of phenol derivatives to cyclohexanones in water under microwave irradiation. New Journal of Chemistry, 2012, 36, 1085.	2.8	52
13	An effective medium of H2O and low-pressure CO2 for the selective hydrogenation of aromatic nitro compounds to anilines. Green Chemistry, 2011, 13, 570.	9.0	51
14	Synthesis of polyurea from 1,6-hexanediamine with CO 2 through a two-step polymerization. Green Energy and Environment, 2017, 2, 370-376.	8.7	51
15	Solvent effects on heterogeneous catalysis in the selective hydrogenation of cinnamaldehyde over a conventional Pd/C catalyst. Catalysis Science and Technology, 2018, 8, 3580-3589.	4.1	49
16	Polyethylene glycol-stabilized platinum nanoparticles: The efficient and recyclable catalysts for selective hydrogenation of o-chloronitrobenzene to o-chloroaniline. Journal of Colloid and Interface Science, 2009, 336, 675-678.	9.4	46
17	Hydrogenation of phenol with supported Rh catalysts in the presence of compressed CO2: Its effects on reaction rate, product selectivity and catalyst life. Journal of Supercritical Fluids, 2010, 54, 190-201.	3.2	44
18	Chlorine-Modified Ru/TiO ₂ Catalyst for Selective Guaiacol Hydrodeoxygenation. ACS Sustainable Chemistry and Engineering, 2021, 9, 3083-3094.	6.7	40

#	Article	IF	Citations
19	Pt/TiH ₂ Catalyst for Ionic Hydrogenation via Stored Hydrides in the Presence of Gaseous H ₂ . ACS Catalysis, 2019, 9, 6425-6434.	11,2	39
20	Direct Synthesis of Polyurea Thermoplastics from CO ₂ and Diamines. ACS Applied Materials & Diamines. Diamines & Diam	8.0	37
21	Synthesis of Polyurea via the Addition of Carbon Dioxide to a Diamine Catalyzed by Organic and Inorganic Bases. Advanced Synthesis and Catalysis, 2019, 361, 317-325.	4.3	33
22	Selective N-Methylation of $\langle i \rangle N \langle i \rangle$ -Methylaniline with CO $\langle sub \rangle 2 \langle sub \rangle$ and H $\langle sub \rangle 2 \langle sub \rangle$ over TiO $\langle sub \rangle 2 \langle sub \rangle$ -Supported PdZn Catalyst. ACS Catalysis, 2020, 10, 3285-3296.	11.2	33
23	Cyclization of citronellal to p-menthane-3,8-diols in water and carbon dioxide. Green Chemistry, 2009, 11, 1227.	9.0	31
24	Utilization of carbon dioxide to build a basic block for polymeric materials: an isocyanate-free route to synthesize a soluble oligourea. RSC Advances, 2015, 5, 42095-42100.	3.6	28
25	A facile strategy for confining ZnPd nanoparticles into a ZnO@Al2O3 support: A stable catalyst for glycerol hydrogenolysis. Journal of Catalysis, 2016, 337, 284-292.	6.2	28
26	Transformation of \hat{I}^3 -valerolactone into 1,4-pentanediol and 2-methyltetrahydrofuran over Zn-promoted Cu/Al ₂ O ₃ catalysts. Catalysis Science and Technology, 2020, 10, 4412-4423.	4.1	28
27	Selective hydrogenation of unsaturated aldehydes in a poly(ethylene glycol)/compressed carbon dioxide biphasic system. Green Chemistry, 2008, 10, 1082.	9.0	26
28	Knitting an oxygenated network-coat on carbon nanotubes from biomass and their applications in catalysis. Journal of Materials Chemistry, 2011, 21, 10929.	6.7	26
29	A new strategy for finely controlling the metal (oxide) coating on colloidal particles with tunable catalytic properties. Journal of Materials Chemistry, 2011, 21, 6654.	6.7	26
30	The effect of water on the hydrogenation of o-chloronitrobenzene in ethanol, n-heptane and compressed carbon dioxide. Applied Catalysis A: General, 2013, 455, 8-15.	4.3	25
31	Effect of Phosphine Doping and the Surface Metal State of Ni on the Catalytic Performance of Ni/Al2O3 Catalyst. Catalysts, 2015, 5, 759-773.	3.5	25
32	PdGa/TiO ₂ an efficient heterogeneous catalyst for direct methylation of N-methylaniline with CO ₂ /H ₂ . RSC Advances, 2016, 6, 103650-103656.	3.6	25
33	Hydrogenation of levulinic acid by RuCl ₂ (PPh ₃) ₃ in supercritical CO ₂ : the significance of structural changes of Ru complexes via interaction with CO ₂ . Green Chemistry, 2016, 18, 3370-3377.	9.0	25
34	Synthesis of a novel hydrophobic polyurea gel from CO 2 and amino-modified polysiloxane. Journal of CO2 Utilization, 2016, 15, 131-135.	6.8	22
35	A self-healing and recyclable poly(urea-imine) thermoset synthesized from CO ₂ . Green Chemistry, 2022, 24, 1561-1569.	9.0	21
36	Highly selective and efficient catalytic conversion of ethyl stearate into liquid hydrocarbons over a Ru/TiO2 catalyst under mild conditions. Catalysis Science and Technology, 2012, 2, 1328.	4.1	20

#	Article	IF	Citations
37	<i>N</i> â€Methylation of <i>N</i> â€Methylaniline with Carbon Dioxide and Molecular Hydrogen over a Heterogeneous Nonâ€Noble Metal Cu/TiO ₂ Catalyst. ChemCatChem, 2019, 11, 3919-3926.	3.7	19
38	Reductive amination of 1,6-hexanediol with Ru/Al2O3 catalyst in supercritical ammonia. Science China Chemistry, 2017, 60, 920-926.	8.2	18
39	New Kind of Thermoplastic Polyurea Elastomers Synthesized from CO ₂ and with Self-Healing Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 12677-12685.	6.7	18
40	Selective Hydrogenation of m-Dinitrobenzene to m-Nitroaniline over Ru-SnOx/Al2O3 Catalyst. Catalysts, 2014, 4, 276-288.	3.5	17
41	Synthesis of polyureas with CO 2 as carbonyl building block and their high performances. Journal of CO2 Utilization, 2017, 19, 209-213.	6.8	17
42	Hydrodeoxygenation of ethyl stearate over Re-promoted Ru/TiO ₂ catalysts: rate enhancement and selectivity control by the addition of Re. Catalysis Science and Technology, 2020, 10, 222-230.	4.1	17
43	Seed- and solvent-free synthesis of ZSM-5 with tuneable Si/Al ratios for biomass hydrogenation. Green Chemistry, 2020, 22, 1630-1638.	9.0	17
44	Transfer hydrogenation of citral to citronellol with Ru complexes in the mixed solvent of water and polyethylene glycol. Applied Organometallic Chemistry, 2010, 24, 763-766.	3.5	16
45	Synthesis of Polyurea Thermoplastics through a Nonisocyanate Route Using CO2 and Aliphatic Diamines. ACS Sustainable Chemistry and Engineering, 2020, 8, 18626-18635.	6.7	14
46	Supported polyethylene glycol stabilized platinum nanoparticles for chemoselective hydrogenation of halonitrobenzenes in scCO2. Journal of Colloid and Interface Science, 2014, 415, 1-6.	9.4	13
47	Aerobic Catalytic Oxidation of Cyclohexene over TiZrCo Catalysts. Catalysts, 2016, 6, 24.	3.5	13
48	Selective hydrogenation of o-chloronitrobenzene over anatase-ferric oxides supported Ir nanocomposite catalyst. Journal of Colloid and Interface Science, 2014, 432, 200-206.	9.4	11
49	A Study on the Oxygen Vacancies in ZnPd/ZnOâ€Al and their Promoting Role in Glycerol Hydrogenolysis. ChemCatChem, 2015, 7, 1322-1328.	3.7	10
50	A stable and active AgxS crystal preparation and its performance as photocatalyst. Chinese Journal of Catalysis, 2015, 36, 564-571.	14.0	10
51	A green and efficient route for preparation of supported metal colloidal nanoparticles in scCO2. Green Chemistry, 2010, 12, 1417.	9.0	8
52	Fabrication of Co(OH)2 coated Pt nanoparticles as an efficient catalyst for chemoselective hydrogenation of halonitrobenzenes. Journal of Colloid and Interface Science, 2012, 377, 322-327.	9.4	8
53	Photocatalytic Reduction of Aromatic Nitro Compounds with Ag/Ag _{<i>x</i>} S Composites under Visible Light Irradiation. Journal of Physical Chemistry C, 2021, 125, 26021-26030.	3.1	8
54	A green process for production of p -aminophenol from nitrobenzene hydrogenation in CO $_2$ /H $_2$ O: The promoting effects of CO $_2$ and H $_2$ O. Journal of CO $_2$ Utilization, 2017, 18, 229-236.	6.8	7

#	Article	IF	CITATION
55	A green and recyclable ligand-free copper (I) catalysis system for amination of halonitrobenzenes in aqueous ammonia solution. Molecular Catalysis, 2019, 475, 110462.	2.0	5
56	The promoting effects of CO 2 and H 2 O on selective hydrogenations in CO 2 $\!\!\!/$ H 2 O biphasic system. Current Opinion in Green and Sustainable Chemistry, 2018, 10, 46-50.	5.9	3
57	Cyclic oligourea synthesized from CO2: Purification, characterization and properties. Green Energy and Environment, 2022, 7, 477-484.	8.7	3
58	Influence of BrÃ,nsted acid sites on the product distribution in the hydrodeoxygenation of methyl laurate over supported Ru catalysts. Catalysis Science and Technology, 0, , .	4.1	0