Celso A. Reis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2531841/publications.pdf

Version: 2024-02-01

211 papers 13,112 citations

25034 57 h-index 103 g-index

220 all docs

 $\begin{array}{c} 220 \\ \text{docs citations} \end{array}$

times ranked

220

14670 citing authors

#	Article	IF	CITATIONS
1	Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS Journal, 2022, 289, 4251-4303.	4.7	39
2	CARâ€Ts: new perspectives in cancer therapy. FEBS Letters, 2022, 596, 403-416.	2.8	16
3	KRAS as a Modulator of the Inflammatory Tumor Microenvironment: Therapeutic Implications. Cells, 2022, 11, 398.	4.1	23
4	Glycans and Cancer., 2022,,.		0
5	Presence of Helicobacter Species in Gastric Mucosa of Human Patients and Outcome of Helicobacter Eradication Treatment. Journal of Personalized Medicine, 2022, 12, 181.	2.5	6
6	Rewired glycosylation activity promotes scarless regeneration and functional recovery in spiny mice after complete spinal cord transection. Developmental Cell, 2022, 57, 440-450.e7.	7.0	26
7	Phenylethyl Isothiocyanate: A Bioactive Agent for Gastrointestinal Health. Molecules, 2022, 27, 794.	3.8	11
8	OUP accepted manuscript. Glycobiology, 2022, , .	2.5	0
9	Glycans as Targets for Drug Delivery in Cancer. Cancers, 2022, 14, 911.	3.7	19
10	Insights on ErbB glycosylation – contributions to precision oncology. Trends in Cancer, 2022, 8, 448-455.	7.4	9
11	<i>Helicobacter</i> species binding to the human gastric mucosa. Helicobacter, 2022, 27, e12867.	3.5	5
12	Crucial Role of Oncogenic KRAS Mutations in Apoptosis and Autophagy Regulation: Therapeutic Implications. Cells, 2022, 11, 2183.	4.1	18
13	Extracellular Matrix Mimics Using Hyaluronan-Based Biomaterials. Trends in Biotechnology, 2021, 39, 90-104.	9.3	86
14	Helicobacter pylori lipopolysaccharide structural domains and their recognition by immune proteins revealed with carbohydrate microarrays. Carbohydrate Polymers, 2021, 253, 117350.	10.2	14
15	3D hydrogel mimics of the tumor microenvironment: the interplay among hyaluronic acid, stem cells and cancer cells. Biomaterials Science, 2021, 9, 252-260.	5.4	13
16	Multilayer platform to model the bioactivity of hyaluronic acid in gastric cancer. Materials Science and Engineering C, 2021, 119, 111616.	7.3	7
17	Glycosylation of Cancer Extracellular Vesicles: Capture Strategies, Functional Roles and Potential Clinical Applications. Cells, 2021, 10, 109.	4.1	64
18	Expression of Thomsen–Friedenreich Antigen in Colorectal Cancer and Association with Microsatellite Instability. International Journal of Molecular Sciences, 2021, 22, 1340.	4.1	1

#	Article	IF	CITATIONS
19	Mycobacterium tuberculosis Infection Up-Regulates Sialyl Lewis X Expression in the Lung Epithelium. Microorganisms, 2021, 9, 99.	3.6	8
20	Aberrant protein glycosylation in cancer: implications in targeted therapy. Biochemical Society Transactions, 2021, 49, 843-854.	3.4	16
21	The Extracellular Small Leucine-Rich Proteoglycan Biglycan Is a Key Player in Gastric Cancer Aggressiveness. Cancers, 2021, 13, 1330.	3.7	26
22	Terminal $\hat{l}\pm 2,6$ -sialylation of epidermal growth factor receptor modulates antibody therapy response of colorectal cancer cells. Cellular Oncology (Dordrecht), 2021, 44, 835-850.	4.4	24
23	Glycosylation is a key in SARS-CoV-2 infection. Journal of Molecular Medicine, 2021, 99, 1023-1031.	3.9	50
24	ST6Gal1 targets the ectodomain of ErbB2 in a site-specific manner and regulates gastric cancer cell sensitivity to trastuzumab. Oncogene, 2021, 40, 3719-3733.	5.9	27
25	Adhesion of Helicobacter Species to the Human Gastric Mucosa: A Deep Look Into Glycans Role. Frontiers in Molecular Biosciences, 2021, 8, 656439.	3.5	26
26	Chitosan-olive oil microparticles for phenylethyl isothiocyanate delivery: Optimal formulation. PLoS ONE, 2021, 16, e0248257.	2.5	9
27	Emerging glycoâ€based strategies to steer immune responses. FEBS Journal, 2021, 288, 4746-4772.	4.7	22
28	The role of O-glycosylation in human disease. Molecular Aspects of Medicine, 2021, 79, 100964.	6.4	51
29	Complement Decay-Accelerating Factor is a modulator of influenza A virus lung immunopathology. PLoS Pathogens, 2021, 17, e1009381.	4.7	3
30	Rotavirus susceptibility of antibiotic-treated mice ascribed to diminished expression of interleukin-22. PLoS ONE, 2021, 16, e0247738.	2.5	9
31	P-selectin glycoprotein ligand 1 promotes T cell lymphoma development and dissemination. Translational Oncology, 2021, 14, 101125.	3.7	7
32	Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management. Biomolecules, 2021, 11, 136.	4.0	20
33	Heparan Sulfate Biosynthesis and Sulfation Profiles as Modulators of Cancer Signalling and Progression. Frontiers in Oncology, 2021, 11, 778752.	2.8	44
34	Hyaluronic Acid of Low Molecular Weight Triggers the Invasive "Hummingbird―Phenotype on Gastric Cancer Cells. Advanced Biology, 2020, 4, e2000122.	3.0	8
35	Phenylethyl Isothiocyanate Extracted from Watercress By-Products with Aqueous Micellar Systems: Development and Optimisation. Antioxidants, 2020, 9, 698.	5.1	25
36	Targeting Glycosylation: A New Road for Cancer Drug Discovery. Trends in Cancer, 2020, 6, 757-766.	7.4	155

#	Article	IF	Citations
37	Deficiency in the glycosyltransferase Gcnt1 increases susceptibility to tuberculosis through a mechanism involving neutrophils. Mucosal Immunology, 2020, 13, 836-848.	6.0	17
38	Tn and Sialyl‶n antigens in canine gastric tissues. Veterinary and Comparative Oncology, 2020, 18, 615-625.	1.8	4
39	Tunable layer-by-layer films containing hyaluronic acid and their interactions with CD44. Journal of Materials Chemistry B, 2020, 8, 3880-3885.	5.8	31
40	Orally administrated chitosan microspheres bind Helicobacter pylori and decrease gastric infection in mice. Acta Biomaterialia, 2020, 114, 206-220.	8.3	19
41	iLoF: An intelligent Lab on Fiber Approach for Human Cancer Single-Cell Type Identification. Scientific Reports, 2020, 10, 3171.	3.3	8
42	Impact of Truncated O-glycans in Gastric-Cancer-Associated CD44v9 Detection. Cells, 2020, 9, 264.	4.1	11
43	Analysis of the Effect of Increased α2,3-Sialylation on RTK Activation in MKN45 Gastric Cancer Spheroids Treated with Crizotinib. International Journal of Molecular Sciences, 2020, 21, 722.	4.1	13
44	Esophageal, gastric and colorectal cancers: Looking beyond classical serological biomarkers towards glycoproteomics-assisted precision oncology. Theranostics, 2020, 10, 4903-4928.	10.0	39
45	Glycosylation in the Era of Cancer-Targeted Therapy: Where Are We Heading?. Cancer Cell, 2019, 36, 6-16.	16.8	349
46	Carcinoembryonic antigen carrying SLe $<$ sup $>$ X $<$ /sup $>$ as a new biomarker of more aggressive gastric carcinomas. Theranostics, 2019, 9, 7431-7446.	10.0	35
47	O-glycans truncation modulates gastric cancer cell signaling and transcription leading to a more aggressive phenotype. EBioMedicine, 2019, 40, 349-362.	6.1	63
48	Different isolation approaches lead to diverse glycosylated extracellular vesicle populations. Journal of Extracellular Vesicles, 2019, 8, 1621131.	12.2	78
49	Oâ€glycan truncation enhances cancerâ€related functions of <scp>CD</scp> 44 in gastric cancer. FEBS Letters, 2019, 593, 1675-1689.	2.8	36
50	Exploring sialyl-Tn expression in microfluidic-isolated circulating tumour cells: A novel biomarker and an analytical tool for precision oncology applications. New Biotechnology, 2019, 49, 77-87.	4.4	31
51	Lipid nanoparticles to counteract gastric infection without affecting gut microbiota. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 378-386.	4.3	31
52	Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nature Cell Biology, 2018, 20, 332-343.	10.3	1,101
53	Analysis of sialyl-Lewis x on MUC5AC and MUC1 mucins in pancreatic cancer tissues. International Journal of Biological Macromolecules, 2018, 112, 33-45.	7.5	18
54	Metabolic control of T cell immune response through glycans in inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4651-E4660.	7.1	77

#	Article	IF	CITATIONS
55	Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cellular Immunology, 2018, 333, 46-57.	3.0	157
56	Detection of post-translational modifications using solid-phase proximity ligation assay. New Biotechnology, 2018, 45, 51-59.	4.4	21
57	In silico approaches for unveiling novel glycobiomarkers in cancer. Journal of Proteomics, 2018, 171, 95-106.	2.4	14
58	Gastric cancer: Basic aspects. Helicobacter, 2018, 23, e12523.	3.5	35
59	Multicellular Human Gastric Cancer Spheroids Mimic the Glycosylation Phenotype of Gastric Carcinomas. Molecules, 2018, 23, 2815.	3.8	22
60	Molecular weight of surface immobilized hyaluronic acid influences CD44-mediated binding of gastric cancer cells. Scientific Reports, 2018, 8, 16058.	3.3	47
61	The Thomsen-Friedenreich Antigen: A Highly Sensitive and Specific Predictor of Microsatellite Instability in Gastric Cancer. Journal of Clinical Medicine, 2018, 7, 256.	2.4	14
62	Hypoxia and serum deprivation induces glycan alterations in triple negative breast cancer cells. Biological Chemistry, 2018, 399, 661-672.	2.5	11
63	Protein glycosylation in gastric and colorectal cancers: Toward cancer detection and targeted therapeutics. Cancer Letters, 2017, 387, 32-45.	7.2	65
64	Docosahexaenoic acid loaded lipid nanoparticles with bactericidal activity against Helicobacter pylori. International Journal of Pharmaceutics, 2017, 519, 128-137.	5.2	47
65	Epitope mapping of a new anti-Tn antibody detecting gastric cancer cells. Glycobiology, 2017, 27, 635-645.	2.5	15
66	Eucalyptus spp. outer bark extracts inhibit Helicobacter pylori growth: in vitro studies. Industrial Crops and Products, 2017, 105, 207-214.	5.2	13
67	Aberrant Glycosylation in Cancer: A Novel Molecular Mechanism Controlling Metastasis. Cancer Cell, 2017, 31, 733-735.	16.8	128
68	Sialyl-Tn identifies muscle-invasive bladder cancer basal and luminal subtypes facing decreased survival, being expressed by circulating tumor cells and metastases. Urologic Oncology: Seminars and Original Investigations, 2017, 35, 675.e1-675.e8.	1.6	39
69	Early GalNAc O-Glycosylation: Pushing the Tumor Boundaries. Cancer Cell, 2017, 32, 544-545.	16.8	11
70	Gastric Cancer Cell Glycosylation as a Modulator of the ErbB2 Oncogenic Receptor. International Journal of Molecular Sciences, 2017, 18, 2262.	4.1	24
71	Helicobacter pylori infection: A brief overview on alternative natural treatments to conventional therapy. Critical Reviews in Microbiology, 2016, 42, 94-105.	6.1	24
72	Mucin-Type O-Glycosylation in Gastric Carcinogenesis. Biomolecules, 2016, 6, 33.	4.0	43

#	Article	IF	CITATIONS
73	Glycomic Approaches for the Discovery of Targets in Gastrointestinal Cancer. Frontiers in Oncology, 2016, 6, 55.	2.8	47
74	Hypoxia enhances the malignant nature of bladder cancer cells and concomitantly antagonizes protein <i>O</i> -glycosylation extension. Oncotarget, 2016, 7, 63138-63157.	1.8	58
75	Cadherins Glycans in Cancer: Sweet Players in a Bitter Process. Trends in Cancer, 2016, 2, 519-531.	7.4	31
76	Muc5ac gastric mucin glycosylation is shaped by FUT2 activity and functionally impacts Helicobacter pylori binding. Scientific Reports, 2016, 6, 25575.	3.3	51
77	Glycosyltransferases and Gastric Cancer. , 2016, , 17-32.		0
78	Reciprocal Modulation of Terminal Sialylation and Bisecting N-Glycans: A New Axis of Cancer-Cell Glycome Regulation?. Journal of Biological Chemistry, 2016, 291, 8308.	3.4	2
79	Glycomic and sialoproteomic data of gastric carcinoma cells overexpressing ST3GAL4. Data in Brief, 2016, 7, 814-833.	1.0	13
80	Bacteria-targeted biomaterials: Glycan-coated microspheres to bind Helicobacter pylori. Acta Biomaterialia, 2016, 33, 40-50.	8.3	15
81	Canine Gastric Pathology: A Review. Journal of Comparative Pathology, 2016, 154, 9-37.	0.4	25
82	Mechanisms of cisplatin resistance and targeting of cancer stem cells: Adding glycosylation to the equation. Drug Resistance Updates, 2016, 24, 34-54.	14.4	124
83	Glycomic analysis of gastric carcinoma cells discloses glycans as modulators of RON receptor tyrosine kinase activation in cancer. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 1795-1808.	2.4	49
84	Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer. Oncogene, 2016, 35, 1619-1631.	5.9	103
85	Studying T Cells N-Glycosylation by Imaging Flow Cytometry. Methods in Molecular Biology, 2016, 1389, 167-176.	0.9	4
86	<i>O</i> -mannosylation and <i>N</i> -glycosylation: two coordinated mechanisms regulating the tumour suppressor functions of E-cadherin in cancer. Oncotarget, 2016, 7, 65231-65246.	1.8	35
87	O-glycan sialylation alters galectin-3 subcellular localization and decreases chemotherapy sensitivity in gastric cancer. Oncotarget, 2016, 7, 83570-83587.	1.8	38
88	Identification of novel plasma glycosylation-associated markers of aging. Oncotarget, 2016, 7, 7455-7468.	1.8	35
89	Glycosylation. , 2016, , 1933-1937.		0
90	Anti-Influenza Neuraminidase Inhibitor Oseltamivir Phosphate Induces Canine Mammary Cancer Cell Aggressiveness. PLoS ONE, 2015, 10, e0121590.	2.5	15

#	Article	IF	CITATIONS
91	Hypoxia Up-Regulates Galectin-3 in Mammary Tumor Progression and Metastasis. PLoS ONE, 2015, 10, e0134458.	2.5	31
92	Probing the O-Glycoproteome of Gastric Cancer Cell Lines for Biomarker Discovery*. Molecular and Cellular Proteomics, 2015, 14, 1616-1629.	3.8	91
93	Glycoengineered cell models for the characterization of cancer O-glycoproteome: an innovative strategy for biomarker discovery. Expert Review of Proteomics, 2015, 12, 337-342.	3.0	10
94	Helicobacter pylori chronic infection and mucosal inflammation switches the human gastric glycosylation pathways. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1928-1939.	3.8	60
95	Morphological features and mucin expression profile of breast carcinomas with signet-ring cell differentiation. Pathology Research and Practice, 2015, 211, 588-595.	2.3	10
96	Glycosylation in cancer: mechanisms and clinical implications. Nature Reviews Cancer, 2015, 15, 540-555.	28.4	2,147
97	E-Cadherin Glycosylation in Cancer. , 2015, , 977-982.		0
98	A comparison of <i>Helicobacter pylori</i> and nonâ€ <i>Helicobacter pylori Helicobacter</i> spp. Binding to Canine Gastric Mucosa with Defined Gastric Glycophenotype. Helicobacter, 2014, 19, 249-259.	3.5	16
99	An immunohistochemical study of canine spontaneous gastric polyps. Diagnostic Pathology, 2014, 9, 166.	2.0	12
100	Dysregulation of T cell receptor N-glycosylation: a molecular mechanism involved in ulcerative colitis. Human Molecular Genetics, 2014, 23, 2416-2427.	2.9	55
101	Atomic force microscopy measurements reveal multiple bonds between <i>Helicobacter pylori</i> blood group antigen binding adhesin and Lewis b ligand. Journal of the Royal Society Interface, 2014, 11, 20141040.	3.4	14
102	The LacdiNAc-Specific Adhesin LabA Mediates Adhesion of Helicobacter pylori to Human Gastric Mucosa. Journal of Infectious Diseases, 2014, 210, 1286-1295.	4.0	83
103	E-cadherin Glycosylation in Cancer. , 2014, , 1-6.		1
104	Pancreatic Cancer Cell Glycosylation Regulates Cell Adhesion and Invasion through the Modulation of $\hat{l}\pm2\hat{l}^21$ Integrin and E-Cadherin Function. PLoS ONE, 2014, 9, e98595.	2.5	55
105	Gastric cancer: adding glycosylation to the equation. Trends in Molecular Medicine, 2013, 19, 664-676.	6.7	95
106	First-degree relatives of early-onset gastric cancer patients show a high risk for gastric cancer: phenotype and genotype profile. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2013, 463, 391-399.	2.8	18
107	Bioengineered surfaces promote specific protein–glycan mediated binding of the gastric pathogen Helicobacter pylori. Acta Biomaterialia, 2013, 9, 8885-8893.	8.3	19
108	Response of high-risk of recurrence/progression bladder tumours expressing sialyl-Tn and sialyl-6-T to BCG immunotherapy. British Journal of Cancer, 2013, 109, 2106-2114.	6.4	36

#	Article	IF	Citations
109	Glycoproteomic Analysis of Serum from Patients with Gastric Precancerous Lesions. Journal of Proteome Research, 2013, 12, 1454-1466.	3.7	65
110	Bacterial-binding chitosan microspheres for gastric infection treatment and prevention. Acta Biomaterialia, 2013, 9, 9370-9378.	8.3	29
111	Quantitative MUC5AC and MUC6 mucin estimations in gastric mucus by a least-squares minimization method. Analytical Biochemistry, 2013, 439, 204-211.	2.4	3
112	Overexpression of tumourâ€ssociated carbohydrate antigen sialylâ€₹n in advanced bladder tumours. Molecular Oncology, 2013, 7, 719-731.	4.6	79
113	Apoptotic cells selectively uptake minor glycoforms of vitronectin from serum. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 373-384.	4.9	4
114	E-cadherin and adherens-junctions stability in gastric carcinoma: Functional implications of glycosyltransferases involving N-glycan branching biosynthesis, N-acetylglucosaminyltransferases III and V. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2690-2700.	2.4	101
115	Autoantibodies to MUC1 glycopeptides cannot be used as a screening assay for early detection of breast, ovarian, lung or pancreatic cancer. British Journal of Cancer, 2013, 108, 2045-2055.	6.4	52
116	Immunodetection of Glycosyltransferases in Gastrointestinal Tissues. Methods in Molecular Biology, 2013, 1022, 349-356.	0.9	2
117	Challenging the limits of detection of sialylated <scp>T</scp> homsen– <scp>F</scp> riedenreich antigens by inâ€gel deglycosylation and nanoâ€ <scp>LC</scp> â€ <scp>MALDI</scp> â€ <scp>TOF</scp> â€ <scp>MS</scp> . Electrophoresis, 2013, 34, 2337-2341.	2.4	12
118	Expression of ST3GAL4 Leads to SLex Expression and Induces c-Met Activation and an Invasive Phenotype in Gastric Carcinoma Cells. PLoS ONE, 2013, 8, e66737.	2.5	96
119	Mass Spectrometry Methods for Studying Glycosylation in Cancer. Methods in Molecular Biology, 2013, 1007, 301-316.	0.9	15
120	Insulin/IGF-I Signaling Pathways Enhances Tumor Cell Invasion through Bisecting GlcNAc N-glycans Modulation. An Interplay with E-Cadherin. PLoS ONE, 2013, 8, e81579.	2.5	33
121	Pteridium aquilinum and Its Ptaquiloside Toxin Induce DNA Damage Response in Gastric Epithelial Cells, a Link With Gastric Carcinogenesis. Toxicological Sciences, 2012, 126, 60-71.	3.1	31
122	Canine tumors: a spontaneous animal model of human carcinogenesis. Translational Research, 2012, 159, 165-172.	5.0	208
123	Identification of new cancer biomarkers based on aberrant mucin glycoforms by <i>in situ</i> proximity ligation. Journal of Cellular and Molecular Medicine, 2012, 16, 1474-1484.	3.6	67
124	Mucin 6 and Tn Antigen Expression in Canine Mammary Tumours: Correlation with Pathological Features. Journal of Comparative Pathology, 2012, 147, 410-418.	0.4	3
125	Loss and Recovery of Mgat3 and GnT-III Mediated E-cadherin N-glycosylation Is a Mechanism Involved in Epithelial-Mesenchymal-Epithelial Transitions. PLoS ONE, 2012, 7, e33191.	2.5	93
126	A new approach on the gastric absorption of anthocyanins. Food and Function, 2012, 3, 508.	4.6	72

#	Article	IF	CITATIONS
127	Salt effects on solvent features of coexisting phases in aqueous polymer/polymer two-phase systems. Journal of Chromatography A, 2012, 1229, 38-47.	3.7	42
128	Epithelial E- and P-cadherins: Role and clinical significance in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1826, 297-311.	7.4	137
129	BJcuL, a lectin purified from Bothrops jararacussu venom, induces apoptosis in human gastric carcinoma cells accompanied by inhibition of cell adhesion and actin cytoskeleton disassembly. Toxicon, 2012, 59, 81-85.	1.6	36
130	Firstâ€degree relatives of patients with earlyâ€onset gastric carcinoma show even at young ages a high prevalence of advanced <scp>OLGA</scp> / <scp>OLGIM</scp> stages and dysplasia. Alimentary Pharmacology and Therapeutics, 2012, 35, 1451-1459.	3.7	59
131	First degree relatives and familial aggregation of gastric cancer: who to choose for control in case–control studies?. Familial Cancer, 2012, 11, 137-143.	1.9	7
132	Glycophenotypic Alterations Induced by Pteridium aquilinum in Mice Gastric Mucosa: Synergistic Effect with Helicobacter pylori Infection. PLoS ONE, 2012, 7, e38353.	2.5	15
133	Sialyl Lewisx-dependent binding of human monocyte-derived dendritic cells to selectins. Biochemical and Biophysical Research Communications, 2011, 409, 459-464.	2.1	24
134	Modulation of E-cadherin function and dysfunction by N-glycosylation. Cellular and Molecular Life Sciences, 2011, 68, 1011-1020.	5.4	132
135	Effect of surface chemistry on bacterial adhesion, viability, and morphology. Journal of Biomedical Materials Research - Part A, 2011, 99A, 344-353.	4.0	49
136	Solvent properties governing protein partitioning in polymer/polymer aqueous two-phase systems. Journal of Chromatography A, 2011, 1218, 1379-1384.	3.7	53
137	Glycopeptide microarray for autoantibody detection in cancer. Expert Review of Proteomics, 2011, 8, 435-437.	3.0	13
138	Sialylation regulates galectin-3/ligand interplay during mammary tumour progression - a case of targeted uncloaking. International Journal of Developmental Biology, 2011, 55, 823-834.	0.6	24
139	ST6GalNAc-I controls expression of sialyl-Tn antigen in gastrointestinal tissues. Frontiers in Bioscience - Elite, 2011, E3, 1443-1455.	1.8	81
140	Glycosylation., 2011,, 1571-1575.		0
141	Infection-associated FUT2 (Fucosyltransferase 2) genetic variation and impact on functionality assessed by in vivo studies. Glycoconjugate Journal, 2010, 27, 61-68.	2.7	29
142	Helicobacter pylori adhesion to gastric epithelial cells is mediated by glycan receptors. Brazilian Journal of Medical and Biological Research, 2010, 43, 611-618.	1.5	73
143	MUC2 mucin is a major carrier of the cancer-associated sialyl-Tn antigen in intestinal metaplasia and gastric carcinomas. Glycobiology, 2010, 20, 199-206.	2.5	93
144	Alterations in glycosylation as biomarkers for cancer detection. Journal of Clinical Pathology, 2010, 63, 322-329.	2.0	369

#	Article	IF	CITATIONS
145	Solvent Properties Governing Solute Partitioning in Polymer/Polymer Aqueous Two-Phase Systems: Nonionic Compounds. Journal of Physical Chemistry B, 2010, 114, 457-462.	2.6	48
146	Differential expression of \hat{l} ±-2,3-sialyltransferases and \hat{l} ±-1,3/4-fucosyltransferases regulates the levels of sialyl Lewis a and sialyl Lewis x in gastrointestinal carcinoma cells. International Journal of Biochemistry and Cell Biology, 2010, 42, 80-89.	2.8	109
147	Sweet receptors mediate the adhesion of the gastric pathogen <i>Helicobacter pylori </i> glycoproteomic strategies. Expert Review of Proteomics, 2010, 7, 307-310.	3.0	18
148	Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa. Glycobiology, 2009, 19, 1525-1536.	2.5	93
149	CDX2 expression is induced by i>Helicobacter pylori ion AGS cells. Scandinavian Journal of Gastroenterology, 2009, 44, 124-125.	1.5	18
150	The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin. Human Molecular Genetics, 2009, 18 , $2599-2608$.	2.9	100
151	Expression of UDP- <i>N</i> -acetyl-D-galactosamine: Polypeptide <i>N</i> -acetylgalactosaminyltransferase-6 in Gastric Mucosa, Intestinal Metaplasia, and Gastric Carcinoma. Journal of Histochemistry and Cytochemistry, 2009, 57, 79-86.	2.5	58
152	MUC1 expression in canine malignant mammary tumours and relationship to clinicopathological features. Veterinary Journal, 2009, 182, 491-493.	1.7	17
153	Juvenile polyps have gastric differentiation with MUC5AC expression and downregulation of CDX2 and SMAD4. Histochemistry and Cell Biology, 2009, 131, 765-772.	1.7	12
154	<i>Helicobacter pylori cag</i> pathogenicity island-positive strains induce syndecan-4 expression in gastric epithelial cells. FEMS Immunology and Medical Microbiology, 2009, 56, 223-232.	2.7	17
155	Role of E-cadherin N-glycosylation profile in a mammary tumor model. Biochemical and Biophysical Research Communications, 2009, 379, 1091-1096.	2.1	67
156	Molecular Plasticity of E-Cadherin and Sialyl Lewis X Expression, in Two Comparative Models of Mammary Tumorigenesis. PLoS ONE, 2009, 4, e6636.	2.5	15
157	Helicobacter pylori induces β3GnT5 in human gastric cell lines, modulating expression of the SabA ligand sialyl–Lewis x. Journal of Clinical Investigation, 2008, 118, 2325-36.	8.2	95
158	Relevance of MUC1 mucin variable number of tandem repeats polymorphism in H pylori adhesion to gastric epithelial cells. World Journal of Gastroenterology, 2008, 14, 1411.	3.3	20
159	Biological significance of cancer-associated sialyl-Tn antigen: Modulation of malignant phenotype in gastric carcinoma cells. Cancer Letters, 2007, 249, 157-170.	7.2	142
160	Increased levels of fucosyltransferase IX and carbohydrate Lewisx adhesion determinant in human NT2N neurons. Journal of Neuroscience Research, 2007, 85, 1260-1270.	2.9	20
161	Sialyl Lewis x expression in canine malignant mammary tumours: correlation with clinicopathological features and E-Cadherin expression. BMC Cancer, 2007, 7, 124.	2.6	28
162	Formation of lactones from sialylated MUC1 glycopeptides. Organic and Biomolecular Chemistry, 2006, 4, 713.	2.8	17

#	Article	IF	CITATIONS
163	Expression profile of mucins (MUC2, MUC5AC and MUC6) in Helicobacter pylori infected pre-neoplastic and neoplastic human gastric epithelium. Molecular Cancer, 2006, 5, 10.	19.2	80
164	Expression of Lea in gastric cancer cell lines depends on FUT3 expression regulated by promoter methylation. Cancer Letters, 2006, 242, 191-197.	7.2	37
165	Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology, 2006, 16, 96-107.	2.5	233
166	Terminal $\hat{l}\pm 1,4$ -linked N-acetylglucosamine in Helicobacter pylori-associated Intestinal Metaplasia of the Human Stomach and Gastric Carcinoma Cell Lines. Journal of Histochemistry and Cytochemistry, 2006, 54, 585-591.	2.5	36
167	Metaplasia \hat{A} — A Transdifferentiatlon Process that Facilitates Cancer Development: The Model of Gastric Intestinal Metaplasia. Critical Reviews in Oncogenesis, 2006, 12, 3-26.	0.4	39
168	Topographic expression of MUC5AC and MUC6 in the gastric mucosa infected by Helicobacter pylori and in associated diseases. Pathology Research and Practice, 2005, 201, 665-672.	2.3	14
169	Comparison of antigen constructs and carrier molecules for augmenting the immunogenicity of the monosaccharide epithelial cancer antigen Tn. Cancer Immunology, Immunotherapy, 2005, 54, 424-430.	4.2	99
170	OCT-1 is over-expressed in intestinal metaplasia and intestinal gastric carcinomas and binds to, but does not transactivate, CDX2 in gastric cells. Journal of Pathology, 2005, 207, 396-401.	4.5	57
171	Thomsen-Friedenreich antigen expression in gastric carcinomas is associated with MUC1 mucin VNTR polymorphism. Glycobiology, 2005, 15, 511-517.	2.5	37
172	A bivalent conjugate vaccine in the treatment of biochemically relapsed prostate cancer: a study of glycosylated MUC-2-KLH and Globo H-KLH conjugate vaccines given with the new semi-synthetic saponin immunological adjuvant GPI-0100 OR QS-21. Vaccine, 2005, 23, 3114-3122.	3.8	73
173	Role of the Human ST6GalNAc-I and ST6GalNAc-II in the Synthesis of the Cancer-Associated Sialyl-Tn Antigen. Cancer Research, 2004, 64, 7050-7057.	0.9	203
174	Lewis Antigen Expression in Gastric Mucosa of Children: Relationship With Helicobacter pylori Infection. Journal of Pediatric Gastroenterology and Nutrition, 2004, 38, 85-91.	1.8	10
175	Role of Mucins in Helicobacter pylori Adhesion to the Gastric Mucosa. Helicobacter, 2004, 9, 181-181.	3.5	1
176	MUC5B expression in gastric carcinoma: relationship with clinico-pathological parameters and with expression of mucins MUC1, MUC2, MUC5AC and MUC6. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2004, 444, 224-230.	2.8	31
177	Two new FUT2 (fucosyltransferase 2 gene) missense polymorphisms, 739Gâ†'A and 839Tâ†'C, are partly responsible for non-secretor status in a Caucasian population from Northern Portugal. Biochemical Journal, 2004, 383, 469-474.	3.7	32
178	A preclinical study comparing approaches for augmenting the immunogenicity of a heptavalent KLH-conjugate vaccine against epithelial cancers. Cancer Immunology, Immunotherapy, 2003, 52, 608-616.	4.2	56
179	Lewis enzyme ($\hat{l}\pm 1\hat{a}\in 3/4$ fucosyltransferase) polymorphisms do not explain the Lewis phenotype in the gastric mucosa of a Portuguese population. Journal of Human Genetics, 2003, 48, 183-189.	2.3	16
180	MUC1 polymorphism confers increased risk for intestinal metaplasia in a Colombian population with chronic gastritis. European Journal of Human Genetics, 2003, 11, 380-384.	2.8	21

#	Article	IF	CITATIONS
181	Role of site-specific promoter hypomethylation in aberrant MUC2 mucin expression in mucinous gastric carcinomas. Cancer Letters, 2003, 189, 129-136.	7.2	35
182	Human MUC2 Mucin Gene Is Transcriptionally Regulated by Cdx Homeodomain Proteins in Gastrointestinal Carcinoma Cell Lines. Journal of Biological Chemistry, 2003, 278, 51549-51556.	3.4	130
183	Polypeptide GalNAc-transferases, ST6GalNAc-transferase I, and ST3Gal-transferase I Expression in Gastric Carcinoma Cell Lines. Journal of Histochemistry and Cytochemistry, 2003, 51, 761-771.	2.5	49
184	Biochemical characterization of soluble Tn glycoproteins from malignant effusions of patients with carcinomas. Oncology Reports, 2003, 10, 1577-85.	2.6	10
185	Functional Conservation of Subfamilies of Putative UDP-N-acetylgalactosamine:Polypeptide N-Acetylgalactosaminyltransferases inDrosophila, Caenorhabditis elegans, and Mammals. Journal of Biological Chemistry, 2002, 277, 22623-22638.	3.4	168
186	Mucins MUC1, MUC2, MUC5AC and MUC6 expression in the evaluation of differentiation and clinico-biological behaviour of gastric carcinoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2002, 440, 304-310.	2.8	89
187	Mucins as key molecules for the classification of intestinal metaplasia of the stomach. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2002, 440, 311-317.	2.8	60
188	Expression of mucins (MUC1, MUC2, MUC5AC, and MUC6) and type 1 Lewis antigens in cases with and withoutHelicobacter pyloricolonization in metaplastic glands of the human stomach. Journal of Pathology, 2002, 197, 37-43.	4.5	46
189	Expression and localization of immunoreactive-sialomucin complex (Muc4) in salivary glands. Tissue and Cell, 2001, 33, 111-118.	2.2	15
190	Chemoenzymatic synthesis of derivatives of a T-cell-stimulating peptide which carry tumor-associated carbohydrate antigens. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 880-885.	1.3	8
191	Chemoenzymatic Synthesis of Sialylated Glycopeptides Derived from Mucins and T-Cell Stimulating Peptides. Journal of the American Chemical Society, 2001, 123, 11117-11125.	13.7	62
192	Advantages of External Accumulation for Electron Capture Dissociation in Fourier Transform Mass Spectrometry. Analytical Chemistry, 2001, 73, 2998-3005.	6. 5	106
193	Immunohistochemical study of the expression of MUC5AC and MUC6 in breast carcinomas and adjacent breast tissues. Journal of Clinical Pathology, 2001, 54, 210-213.	2.0	40
194	Evidence for glycosylation-dependent activities of polypeptide N-acetylgalactosaminyltransferases rGalNAc-T2 and -T4 on mucin glycopeptides. Glycobiology, 2001, 11, 731-740.	2.5	69
195	Current thoughts on the histopathogenesis of gastric cancer. European Journal of Cancer Prevention, 2001, 10, 101-102.	1.3	20
196	Gene-environment interactions in the stomach: role of mucins in Helicobacter pylori adhesion to normal and metaplastic mucosa of the stomach. European Journal of Cancer Prevention, 2001, 10, 103.	1.3	0
197	Reactivity of natural and induced human antibodies to MUC1 mucin with MUC1 peptides and nacetylgalactosamine (GalNAc) peptides. International Journal of Cancer, 2000, 86, 702-712.	5.1	114
198	Gastric carcinoma exhibits distinct types of cell differentiation: an immunohistochemical study of trefoil peptides (TFF1 and TFF2) and mucins (MUC1, MUC2, MUC5AC, and MUC6)., 2000, 190, 437-443.		135

#	Article	IF	CITATIONS
199	Role of fucosyltransferases in the association between apomucin and Lewis antigen expression in normal and malignant gastric epithelium. Gut, 2000, 47, 349-356.	12.1	78
200	Immunohistochemical Study of the Expression of MUC6 Mucin and Co-expression of Other Secreted Mucins (MUC5AC and MUC2) in Human Gastric Carcinomas. Journal of Histochemistry and Cytochemistry, 2000, 48, 377-388.	2.5	142
201	The Lectin Domain of UDP-N-acetyl-d-galactosamine:PolypeptideN-acetylgalactosaminyltransferase-T4 Directs Its Glycopeptide Specificities. Journal of Biological Chemistry, 2000, 275, 38197-38205.	3.4	147
202	Primary signet-ring cell carcinomas of the lung. Human Pathology, 2000, 31, 272.	2.0	1
203	Reactivity of natural and induced human antibodies to MUC1 mucin with MUC1 peptides and n-acetylgalactosamine (GalNAc) peptides., 2000, 86, 702.		1
204	Reactivity of natural and induced human antibodies to MUC1 mucin with MUC1 peptides and nâ€acetylgalactosamine (GalNAc) peptides. International Journal of Cancer, 2000, 86, 702-712.	5.1	3
205	Mucins and mucin-associated carbohydrate antigens expression in gastric carcinoma cell lines. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 1999, 435, 479-485.	2.8	24
206	Patterns of expression of trefoil peptides and mucins in gastric polyps with and without malignant transformation., 1999, 187, 541-548.		47
207	MUC 5 expression in breast carcinomas. Human Pathology, 1999, 30, 1270-1271.	2.0	6
208	Development and characterization of an antibody directed to an alpha-N-acetyl-D-galactosamine glycosylated MUC2 peptide. Glycoconjugate Journal, 1998, 15, 51-62.	2.7	69
209	Expression of fully and under-glycosylated forms of MUC1 mucin in gastric carcinoma. , 1998, 79, 402-410.		104
210	Characterization of a Panel of Monoclonal Antibodies Using GalNAc Glycosylated Peptides and Recombinant MUC1. Tumor Biology, 1998, 19, 127-133.	1.8	7
211	Immunohistochemical study of MUC5AC expression in human gastric carcinomas using a novel monoclonal antibody., 1997, 74, 112-121.		172