William N Beavers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2531426/publications.pdf

Version: 2024-02-01

567281 580821 26 744 15 25 citations h-index g-index papers 26 26 26 1107 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Stable Histone Adduction by 4-Oxo-2-nonenal: A Potential Link between Oxidative Stress and Epigenetics. Journal of the American Chemical Society, 2014, 136, 11864-11866.	13.7	103
2	Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems. Molecular and Cellular Proteomics, 2014, 13, 849-859.	3.8	73
3	An Acinetobacter baumannii, Zinc-Regulated Peptidase Maintains Cell Wall Integrity during Immune-Mediated Nutrient Sequestration. Cell Reports, 2019, 26, 2009-2018.e6.	6.4	61
4	Mechanisms of Pyocyanin Toxicity and Genetic Determinants of Resistance in Staphylococcus aureus. Journal of Bacteriology, 2017, 199, .	2.2	54
5	Dietary Manganese Promotes Staphylococcal Infection of the Heart. Cell Host and Microbe, 2017, 22, 531-542.e8.	11.0	51
6	Arachidonic Acid Kills Staphylococcus aureus through a Lipid Peroxidation Mechanism. MBio, 2019, 10,	4.1	44
7	Zn-regulated GTPase metalloprotein activator 1 modulates vertebrate zinc homeostasis. Cell, 2022, 185, 2148-2163.e27.	28.9	39
8	Manganese Detoxification by MntE Is Critical for Resistance to Oxidative Stress and Virulence of <i>Staphylococcus aureus</i> . MBio, 2019, 10, .	4.1	38
9	Clostridioides difficile Senses and Hijacks Host Heme for Incorporation into an Oxidative Stress Defense System. Cell Host and Microbe, 2020, 28, 411-421.e6.	11.0	36
10	The Acinetobacter baumannii Znu System Overcomes Host-Imposed Nutrient Zinc Limitation. Infection and Immunity, 2019, 87, .	2.2	34
11	Protein Modification by Endogenously Generated Lipid Electrophiles: Mitochondria as the Source and Target. ACS Chemical Biology, 2017, 12, 2062-2069.	3.4	30
12	ï‰-Alkynyl Lipid Surrogates for Polyunsaturated Fatty Acids: Free Radical and Enzymatic Oxidations. Journal of the American Chemical Society, 2014, 136, 11529-11539.	13.7	25
13	ZupT Facilitates Clostridioides difficile Resistance to Host-Mediated Nutritional Immunity. MSphere, 2020, 5, .	2.9	23
14	The Immune Protein Calprotectin Impacts Clostridioides difficile Metabolism through Zinc Limitation. MBio, 2019, 10, .	4.1	21
15	<i>Staphylococcus aureus</i> lacking a functional MntABC manganese import system has increased resistance to copper. Molecular Microbiology, 2021, 115, 554-573.	2.5	20
16	Nuclear Oxidation of a Major Peroxidation DNA Adduct, M1dG, in the Genome. Chemical Research in Toxicology, 2015, 28, 2334-2342.	3.3	18
17	Clostridioides difficile infection induces a rapid influx of bile acids into the gut during colonization of the host. Cell Reports, 2021, 36, 109683.	6.4	16
18	Clostridioides difficile proline fermentation in response to commensal clostridia. Anaerobe, 2020, 63, 102210.	2.1	13

#	Article	IF	CITATIONS
19	A Small-Molecule Modulator of Metal Homeostasis in Gram-Positive Pathogens. MBio, 2020, 11, .	4.1	8
20	Mycobacterium tuberculosis Rv0991c Is a Redox-Regulated Molecular Chaperone. MBio, 2020, 11, .	4.1	7
21	Staphylococcus aureus Peptide Methionine Sulfoxide Reductases Protect from Human Whole-Blood Killing. Infection and Immunity, 2021, 89, e0014621.	2.2	7
22	Clostridioides difficile strain-dependent and strain-independent adaptations to a microaerobic environment. Microbial Genomics, 2021, 7, .	2.0	7
23	Host Polyunsaturated Fatty Acids Potentiate Aminoglycoside Killing of Staphylococcus aureus. Microbiology Spectrum, 2022, 10, e0276721.	3.0	6
24	Mitochondrial Calcium Uniporter Affects Neutrophil Bactericidal Activity during Staphylococcus aureus Infection. Infection and Immunity, 2022, 90, IAI0055121.	2.2	5
25	Lipocalin Blc is a potential hemeâ€binding protein. FEBS Letters, 2021, 595, 206-219.	2.8	4
26	Increased Dietary Manganese Impairs Neutrophil Extracellular Trap Formation Rendering Neutrophils Ineffective at Combating Staphylococcus aureus. Infection and Immunity, 2022, 90, iai0068521.	2.2	1