Arijit Misra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2531045/publications.pdf

Version: 2024-02-01

		840776	1125743
25	207	11	13
papers	citations	h-index	g-index
0.5	0.5	0.5	
25	25	25	89
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Photonic Microwave Frequency Measurement With High Accuracy and Sub-MHz Resolution. Journal of Lightwave Technology, 2022, 40, 2748-2753.	4.6	13
2	High-Bandwidth Arbitrary Signal Detection Using Low-Speed Electronics. IEEE Photonics Journal, 2022, 14, 1-7.	2.0	13
3	Emulation of integrated high-bandwidth photonic AWG using low-speed electronics. , 2022, , .		1
4	Analysis of the effect of jitter and non-idealities on photonic digital-to-analog converters based on Nyquist pulses. , 2022, , .		0
5	Compact and Energy-Efficient Forward-Biased PN Silicon Mach-Zehnder Modulator. IEEE Photonics Journal, 2022, 14, 1-7.	2.0	5
6	Reconfigurable and real-time high-bandwidth Nyquist signal detection with low-bandwidth in silicon photonics. Optics Express, 2022, 30, 13776.	3.4	11
7	Modulation Format Aggregation of Nyquist channels by Spectral Superposition with Electro-Optic Modulators. , 2022, , .		3
8	Analysis of Non-Idealities in the Generation of Reconfigurable Sinc-Shaped Optical Nyquist Pulses. IEEE Access, 2021, 9, 76286-76295.	4.2	13
9	High-speed Silicon Mach-Zehnder Modulator with Corrugated Waveguides for Data Center Interconnects. , 2021, , .		1
10	Agnostic sampling transceiver. Optics Express, 2021, 29, 14828.	3.4	19
10	Agnostic sampling transceiver. Optics Express, 2021, 29, 14828. Brillouin-scattering-induced transparency enabled reconfigurable sensing of RF signals. Photonics Research, 2021, 9, 1486.	3.4 7.0	19
	Brillouin-scattering-induced transparency enabled reconfigurable sensing of RF signals. Photonics		
11	Brillouin-scattering-induced transparency enabled reconfigurable sensing of RF signals. Photonics Research, 2021, 9, 1486. Modulator-based sinc-sequence sampled time and frequency multiplexed QAM signal transmission.		11
11 12	Brillouin-scattering-induced transparency enabled reconfigurable sensing of RF signals. Photonics Research, 2021, 9, 1486. Modulator-based sinc-sequence sampled time and frequency multiplexed QAM signal transmission., 2021,,.	7.0	0
11 12 13	Brillouin-scattering-induced transparency enabled reconfigurable sensing of RF signals. Photonics Research, 2021, 9, 1486. Modulator-based sinc-sequence sampled time and frequency multiplexed QAM signal transmission., 2021,,. Integrated High-Resolution Optical Spectrum Analyzer With Broad Operational Bandwidth. IEEE Photonics Technology Letters, 2020, 32, 1061-1064. Photonic Arbitrary Waveform Generation With Three Times the Sampling Rate of the Modulator	7.0 2.5	11 O 5
11 12 13	Brillouin-scattering-induced transparency enabled reconfigurable sensing of RF signals. Photonics Research, 2021, 9, 1486. Modulator-based sinc-sequence sampled time and frequency multiplexed QAM signal transmission., 2021, , . Integrated High-Resolution Optical Spectrum Analyzer With Broad Operational Bandwidth. IEEE Photonics Technology Letters, 2020, 32, 1061-1064. Photonic Arbitrary Waveform Generation With Three Times the Sampling Rate of the Modulator Bandwidth. IEEE Photonics Technology Letters, 2020, 32, 1544-1547.	7.0 2.5	11 0 5 15
11 12 13 14	Brillouin-scattering-induced transparency enabled reconfigurable sensing of RF signals. Photonics Research, 2021, 9, 1486. Modulator-based sinc-sequence sampled time and frequency multiplexed QAM signal transmission., 2021,,. Integrated High-Resolution Optical Spectrum Analyzer With Broad Operational Bandwidth. IEEE Photonics Technology Letters, 2020, 32, 1061-1064. Photonic Arbitrary Waveform Generation With Three Times the Sampling Rate of the Modulator Bandwidth. IEEE Photonics Technology Letters, 2020, 32, 1544-1547. Integrated high-resolution and broad-bandwidth optical spectrum analyzer., 2020,,.	7.0 2.5	11 0 5 15

ARIJIT MISRA

#	Article	IF	CITATIONS
19	Eight-Channel Silicon-Photonic Wavelength Division Multiplexer With 17 GHz Spacing. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-10.	2.9	28
20	Sinc-shaped, Nyquist Channel Demultiplexing with Silicon Photonics. , 2019, , .		0
21	Integrated all optical sampling of microwave signals in silicon photonics. , 2019, , .		O
22	Integrated source-free all optical sampling with a sampling rate of up to three times the RF bandwidth of silicon photonic MZM. Optics Express, 2019, 27, 29972.	3.4	29
23	Optical convolution with a rectangular frequency comb for almost ideal sampling. , 2019, , .		5
24	Dispersionless time-lens with an integrated silicon nitride ring resonator. , 2019, , .		0
25	Nanofabrication of SOI-Based Photonic Waveguide Resonators for Gravimetric Molecule Detection. Proceedings (mdpi), 2018, 2, 1055.	0.2	0