
Chuyen Pham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2530993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Essentials of High Performance Water Electrolyzers – From Catalyst Layer Materials to Electrode Engineering. Advanced Energy Materials, 2021, 11, 2101998.	10.2	92
2	On the Correlation between the Oxygen in Hydrogen Content and the Catalytic Activity of Cathode Catalysts in PEM Water Electrolysis. ECS Meeting Abstracts, 2021, MA2021-02, 1248-1248.	0.0	0
3	Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis. Electrochemistry Communications, 2020, 110, 106640.	2.3	40
4	Stabilization of Li–S batteries with a lean electrolyte <i>via</i> ion-exchange trapping of lithium polysulfides using a cationic, polybenzimidazolium binder. Sustainable Energy and Fuels, 2020, 4, 1180-1190.	2.5	15
5	Fabrication of a Robust PEM Water Electrolyzer Based on Nonâ€Noble Metal Cathode Catalyst: [Mo ₃ S ₁₃] ^{2â^'} Clusters Anchored to Nâ€Doped Carbon Nanotubes. Small, 2020, 16, e2003161.	5.2	50
6	IrO2 coated TiO2 core-shell microparticles advance performance of low loading proton exchange membrane water electrolyzers. Applied Catalysis B: Environmental, 2020, 269, 118762.	10.8	98
7	Improved Hole Injection in Bulk Heterojunction (BHJ) Hybrid Solar Cells by Applying a Thermally Reduced Graphene Oxide Buffer Layer. Journal of Nanomaterials, 2019, 2019, 1-10.	1.5	4
8	Doped, Defectâ€Enriched Carbon Nanotubes as an Efficient Oxygen Reduction Catalyst for Anion Exchange Membrane Fuel Cells. Advanced Materials Interfaces, 2018, 5, 1800184.	1.9	37
9	[Mo 3 S 13] 2â^' Cluster Decorated Sulfurâ€doped Reduced Graphene Oxide as Noble Metalâ€Free Catalyst for Hydrogen Evolution Reaction in Polymer Electrolyte Membrane Electrolyzers. ChemElectroChem, 2018, 5, 2672-2680.	1.7	15
10	Sulfur doped reduced graphene oxide as metal-free catalyst for the oxygen reduction reaction in anion and proton exchange fuel cells. Electrochemistry Communications, 2017, 77, 71-75.	2.3	78
11	Tridoped Reduced Graphene Oxide as a Metalâ€Free Catalyst for Oxygen Reduction Reaction Demonstrated in Acidic and Alkaline Polymer Electrolyte Fuel Cells. Advanced Sustainable Systems, 2017, 1, 1600038.	2.7	50
12	Graphene-quantum dot hybrid materials on the road to optoelectronic applications. Synthetic Metals, 2016, 219, 33-43.	2.1	14
13	Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials. Nanoscale, 2016, 8, 9682-9687.	2.8	74
14	A Review on Metalâ€Free Doped Carbon Materials Used as Oxygen Reduction Catalysts in Solid Electrolyte Proton Exchange Fuel Cells. Fuel Cells, 2016, 16, 522-529.	1.5	42
15	Quantum dot-nanocarbon based hybrid solar cells with improved long-term performance. Synthetic Metals, 2016, 222, 34-41.	2.1	5
16	Reprint of "Graphene-quantum dot hybrid materials on the road to optoelectronic applications― Synthetic Metals, 2016, 222, 23-33.	2.1	5
17	Thiolated Carbon Nanotubes/CdSe Quantum Dot Based Hybrid Solar Cells with Improved Long-Term Stability. Nano Hybrids, 2015, 9, 7-14.	0.3	2
18	Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment. Applied Physics Letters, 2014, 104, .	1.5	80

CHUYEN PHAM

#	Article	IF	CITATIONS
19	Improved efficiency of bulk heterojunction hybrid solar cells by utilizing CdSe quantum dot–graphene nanocomposites. Physical Chemistry Chemical Physics, 2014, 16, 12251-12260.	1.3	45
20	Thiol functionalized reduced graphene oxide as a base material for novel graphene-nanoparticle hybrid composites. Chemical Engineering Journal, 2013, 231, 146-154.	6.6	85
21	On the Correlation between the Oxygen in Hydrogen Content and the Catalytic Activity of Cathode Catalysts in PEM Water Electrolysis. Journal of the Electrochemical Society, 0, , .	1.3	2