
Renato Grillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2530867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 2018, 16, 71.	9.1	3,689
2	Nanotechnology in Agriculture: Which Innovation Potential Does It Have?. Frontiers in Environmental Science, 2016, 4, .	3.3	365
3	Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. Journal of Hazardous Materials, 2014, 278, 163-171.	12.4	305
4	Engineered nanoparticles and organic matter: A review of the state-of-the-art. Chemosphere, 2015, 119, 608-619.	8.2	271
5	Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies. Journal of Hazardous Materials, 2011, 190, 366-374.	12.4	229
6	Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. Journal of Hazardous Materials, 2014, 268, 207-215.	12.4	218
7	Poly(É›-caprolactone)nanocapsules as carrier systems for herbicides: Physico-chemical characterization and genotoxicity evaluation. Journal of Hazardous Materials, 2012, 231-232, 1-9.	12.4	194
8	Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Scientific Reports, 2017, 7, 44421.	3.3	135
9	Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants. PLoS ONE, 2015, 10, e0132971.	2.5	132
10	Zein Nanoparticles as Eco-Friendly Carrier Systems for Botanical Repellents Aiming Sustainable Agriculture. Journal of Agricultural and Food Chemistry, 2018, 66, 1330-1340.	5.2	132
11	Nanotechnology Applied to Bio-Encapsulation of Pesticides. Journal of Nanoscience and Nanotechnology, 2016, 16, 1231-1234.	0.9	131
12	Controlled release system for ametryn using polymer microspheres: Preparation, characterization and release kinetics in water. Journal of Hazardous Materials, 2011, 186, 1645-1651.	12.4	116
13	Ecotoxicological and regulatory aspects of environmental sustainability of nanopesticides. Journal of Hazardous Materials, 2021, 404, 124148.	12.4	94
14	Ecotoxicological Evaluation of Poly(<i>ε</i> -Caprolactone) Nanocapsules Containing Triazine Herbicides. Journal of Nanoscience and Nanotechnology, 2014, 14, 4911-4917.	0.9	85
15	Polymeric alginate nanoparticles containing the local anesthetic bupivacaine. Journal of Drug Targeting, 2010, 18, 688-699.	4.4	77
16	Foliage adhesion and interactions with particulate delivery systems for plant nanobionics and intelligent agriculture. Nano Today, 2021, 37, 101078.	11.9	77
17	Chitosan nanoparticles loaded the herbicide paraquat: The influence of the aquatic humic substances on the colloidal stability and toxicity. Journal of Hazardous Materials, 2015, 286, 562-572.	12.4	66
18	Characterization of Atrazine-Loaded Biodegradable Poly(Hydroxybutyrate-Co-Hydroxyvalerate) Microspheres. Journal of Polymers and the Environment, 2010, 18, 26-32.	5.0	65

RENATO GRILLO

#	Article	IF	CITATIONS
19	Sericin based nanoformulations: a comprehensive review on molecular mechanisms of interaction with organisms to biological applications. Journal of Nanobiotechnology, 2021, 19, 30.	9.1	59
20	Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine. Environmental Science and Pollution Research, 2014, 21, 11699-11707.	5.3	53
21	Poly(ε-caprolactone) nanocapsules carrying the herbicide atrazine: effect of chitosan-coating agent on physico-chemical stability and herbicide release profile. International Journal of Environmental Science and Technology, 2014, 11, 1691-1700.	3.5	47
22	Poly(hydroxybutyrate-co-hydroxyvalerate) microspheres loaded with atrazine herbicide: screening of conditions for preparation, physico-chemical characterization, and in vitro release studies. Polymer Bulletin, 2011, 67, 479-495.	3.3	43
23	Influence of hybrid polymeric nanoparticle/thermosensitive hydrogels systems on formulation tracking and in vitro artificial membrane permeation: A promising system for skin drug-delivery. Colloids and Surfaces B: Biointerfaces, 2019, 174, 56-62.	5.0	43
24	Poly(Lactide-co-Glycolide) Nanocapsules Containing Benzocaine: Influence of the Composition of the Oily Nucleus on Physico-Chemical Properties and Anesthetic Activity. Pharmaceutical Research, 2011, 28, 1984-1994.	3.5	41
25	Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine toward maize plants. Frontiers in Chemistry, 2015, 3, 61.	3.6	41
26	Benzocaine-Loaded Polymeric Nanocapsules: Study of the Anesthetic Activities. Journal of Pharmaceutical Sciences, 2012, 101, 1157-1165.	3.3	40
27	Synthesis of biogenic silver nanoparticles using Althaea officinalis as reducing agent: evaluation of toxicity and ecotoxicity. Scientific Reports, 2018, 8, 12397.	3.3	39
28	Sub-Micrometer Magnetic Nanocomposites: Insights into the Effect of Magnetic Nanoparticles Interactions on the Optimization of SAR and MRI Performance. ACS Applied Materials & Interfaces, 2016, 8, 25777-25787.	8.0	38
29	Biogenic α-Fe ₂ O ₃ Nanoparticles Enhance the Biological Activity of Trichoderma against the Plant Pathogen <i>Sclerotinia sclerotiorum</i> . ACS Sustainable Chemistry and Engineering, 2021, 9, 1669-1683.	6.7	38
30	Study of the interaction between hydroxymethylnitrofurazone and 2-hydroxypropyl-β-cyclodextrin. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47, 295-302.	2.8	37
31	NanopartÃculas de alginato como sistema de liberação para o herbicida clomazone. Quimica Nova, 2010, 33, 1868-1873.	0.3	29
32	15d-PGJ2-loaded in nanocapsules enhance the antinociceptive properties into rat temporomandibular hypernociception. Life Sciences, 2012, 90, 944-949.	4.3	29
33	On the safety of nanoformulations to non-target soil invertebrates – an atrazine case study. Environmental Science: Nano, 2019, 6, 1950-1958.	4.3	28
34	Interaction between nitroheterocyclic compounds with β-cyclodextrins: Phase solubility and HPLC studies. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47, 865-869.	2.8	27
35	Nanoformulations can significantly affect pesticide degradation and uptake by earthworms and plants. Environmental Chemistry, 2019, 16, 470.	1.5	27
36	The Differences between the Effects of a Nanoformulation and a Conventional Form of Atrazine to Lettuce: Physiological Responses, Defense Mechanisms, and Nutrient Displacement. Journal of Agricultural and Food Chemistry, 2021, 69, 12527-12540.	5.2	25

RENATO GRILLO

#	Article	IF	CITATIONS
37	Silicon nanoforms in crop improvement and stress management. Chemosphere, 2022, 305, 135165.	8.2	25
38	In vitro and in vivo impact assessment of eco-designed CuO nanoparticles on non-target aquatic photoautotrophic organisms. Journal of Hazardous Materials, 2020, 396, 122484.	12.4	23
39	Nanoparticles as a potential protective agent for arsenic toxicity alleviation in plants. Environmental Pollution, 2022, 300, 118887.	7.5	23
40	Physiological mechanisms and phytoremediation potential of the macrophyte Salvinia biloba towards a commercial formulation and an analytical standard of glyphosate. Chemosphere, 2020, 259, 127417.	8.2	22
41	Heightening Awareness for Graduate Students of the Potential Impacts of Nanomaterials on Human Health and the Environment Using a Theoretical–Practical Approach. Journal of Chemical Education, 2017, 94, 1471-1479.	2.3	21
42	Desenvolvimento e caracterização de nanocápsulas de poli (L-lactÃdeo) contendo benzocaÃna. Quimica Nova, 2010, 33, 65-69.	0.3	20
43	Cyclodextrin Inclusion Complexes Loaded in Particles as Drug Carrier Systems. Current Topics in Medicinal Chemistry, 2014, 14, 518-525.	2.1	19
44	Do the joint effects of size, shape and ecocorona influence the attachment and physical eco(cyto)toxicity of nanoparticles to algae?. Nanotoxicology, 2020, 14, 310-325.	3.0	18
45	Interaction between a nano-formulation of atrazine and rhizosphere bacterial communities: atrazine degradation and bacterial community alterations. Environmental Science: Nano, 2020, 7, 3372-3384.	4.3	18
46	Caracterização fÃsico-quÃmica de complexo de inclusão entre hidroximetilnitrofurazona e hidroxipropil-beta-ciclodextrina. Quimica Nova, 2008, 31, 290-295.	0.3	17
47	Recent Advances on Lignocellulosic-Based Nanopesticides for Agricultural Applications. Frontiers in Nanotechnology, 2021, 3, .	4.8	17
48	Hydroxymethylnitrofurazone:Dimethyl-β-cyclodextrin Inclusion Complex: A Physical–Chemistry Characterization. Journal of Biological Physics, 2007, 33, 445-453.	1.5	16
49	Effect of a nanostructured dendrimer-naloxonazine complex on endogenous opioid peptides μ1 receptor-mediated post-ictal antinociception. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 871-880.	3.3	16
50	Nano-priming: Impression on the beginner of plant life. Plant Stress, 2022, 5, 100091.	5.5	16
51	Nano-enabled weed management in agriculture: From strategic design to enhanced herbicidal activity. , 2022, 1, 100008.		16
52	Editorial: Environmental Impact of Nanotechnology: Analyzing the Present for Building the Future. Frontiers in Environmental Science, 2018, 6, .	3.3	14
53	CeO2 nanostructured electrochemical sensor for the simultaneous recognition of diethylstilbestrol and 17β-estradiol hormones. Science of the Total Environment, 2022, 805, 150348.	8.0	14
54	Chitosan/tripolyphosphate nanoformulation carrying paraquat: insights on its enhanced herbicidal activity. Environmental Science: Nano, 2021, 8, 1336-1351.	4.3	14

Renato Grillo

#	Article	IF	CITATIONS
55	Recent advances on nanohybrid systems constituting clay–chitosan with organic molecules – A review. Applied Clay Science, 2022, 226, 106548.	5.2	14
56	Screening of Formulation Variables for the Preparation of Poly(<i>ε</i> -caprolactone) Nanocapsules Containing the Local Anesthetic Benzocaine. Journal of Nanoscience and Nanotechnology, 2011, 11, 2450-2457.	0.9	13
57	A study on the molecular existing interactions in nanoherbicides: A chitooligosaccharide/tripolyphosphate loaded with paraquat case. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562, 220-228.	4.7	12
58	Fabrication and Characterization of a Novel Herbicide Delivery System with Magnetic Collectability and Its Phytotoxic Effect on Photosystem II of Aquatic Macrophyte. Journal of Agricultural and Food Chemistry, 2020, 68, 11105-11113.	5.2	12
59	Interaction mechanism of plant-based nanoarchitectured materials with digestive enzymes of termites as target for pest control: Evidence from molecular docking simulation and in vitro studies. Journal of Hazardous Materials, 2021, 403, 123840.	12.4	12
60	Bupivacaine in alginate and chitosan nanoparticles: an in vivo evaluation of efficacy, pharmacokinetics, and local toxicity. Journal of Pain Research, 2018, Volume 11, 683-691.	2.0	11
61	How does aquatic macrophyte Salvinia auriculata respond to nanoceria upon an increased CO2 source? A Fourier transform-infrared photoacoustic spectroscopy and chlorophyll a fluorescence study. Ecotoxicology and Environmental Safety, 2019, 180, 526-534.	6.0	9
62	Understanding the Interaction of Nanopesticides with Plants. , 2020, , 69-109.		8
63	Analysis of the effects of pesticides and nanopesticides on the environment. BMC Proceedings, 2014, 8, .	1.6	6
64	Is centrifugal ultrafiltration a robust method for determining encapsulation efficiency of pesticide nanoformulations?. Nanoscale, 2021, 13, 5410-5418.	5.6	5
65	High-throughput transcriptomics reveals the mechanisms of nanopesticides – nanoformulation, commercial formulation, active ingredient – finding safe and sustainable-by-design (SSbD) options for the environment. Environmental Science: Nano, 2022, 9, 2182-2194.	4.3	5
66	Host–guest complexation of a nitroheterocyclic compound with cyclodextrins: a spectrofluorimetric and molecular modeling study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 66, 417-421.	1.6	3
67	Tebuconazole and terbuthylazine encapsulated in nanocarriers: preparation, characterization and release kinetics. Environmental Science: Nano, 0, , .	4.3	2
68	Preparation and Characterization of Polymeric Microparticles Used for Controlled Release of Ametryn Herbicide. , 0, , .		1
69	Ecological aspects of aquatic macrophytes for environmental pollution control: An eco-remedial approach. , 2022, , 497-523.		1
70	Liposomes Encapsulating Quantum Dots as Luminescent Probes. Biophysical Journal, 2012, 102, 718a.	0.5	0
71	Effect of the presence of aquatic humic substances on the toxicity of chitosan/tripolyphosphate nanoparticles containing paraquat. Toxicology Letters, 2014, 229, S191.	0.8	0
72	SÃNTESE E CARACTERIZAÇÃ∱O FÃSICO-QUÃMICA DE NANOPARTÀULAS DE QUITOSANA-TRIPOLIFOSFATO PA APLICAÇÃ∱O TÓPICA DE FÃRMACOS. , 0, , 94-108.	\RA	0