Bas van Steensel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2530597/publications.pdf

Version: 2024-02-01

28274 46799 19,259 92 55 89 citations h-index g-index papers 108 108 108 19397 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome-Wide Mapping and Microscopy Visualization of Protein–DNA Interactions by pA-DamID. Methods in Molecular Biology, 2022, 2458, 215-229.	0.9	1
2	Lamina-associated domains: Tethers and looseners. Current Opinion in Cell Biology, 2022, 74, 80-87.	5 . 4	34
3	Nonlinear control of transcription through enhancer–promoter interactions. Nature, 2022, 604, 571-577.	27.8	187
4	Systematic analysis of intrinsic enhancer-promoter compatibility in the mouse genome. Molecular Cell, 2022, 82, 2519-2531.e6.	9.7	47
5	SPIN reveals genome-wide landscape of nuclear compartmentalization. Genome Biology, 2021, 22, 36.	8.8	61
6	3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science, 2021, 372, 984-989.	12.6	132
7	Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance. Molecular Cell, 2021, 81, 2216-2230.e10.	9.7	106
8	Protocol: A Multiplexed Reporter Assay to Study Effects of Chromatin Context on DNA Double-Strand Break Repair. Frontiers in Genetics, 2021, 12, 785947.	2.3	1
9	Enhanced processivity of Dnmt1 by monoubiquitinated histone H3. Genes To Cells, 2020, 25, 22-32.	1.2	18
10	Deciphering Gene Regulation Using Massively Parallel Reporter Assays. Trends in Biochemical Sciences, 2020, 45, 90-91.	7.5	11
11	Local rewiring of genome–nuclear lamina interactions by transcription. EMBO Journal, 2020, 39, e103159.	7.8	59
12	Phosphorylated Lamins in Euchromatin: New Clues to Progeria. Developmental Cell, 2020, 52, 676-678.	7.0	1
13	Cell cycle dynamics of laminaâ€associated <scp>DNA</scp> . EMBO Reports, 2020, 21, e50636.	4.5	74
14	High-throughput identification of human SNPs affecting regulatory element activity. Nature Genetics, 2019, 51, 1160-1169.	21.4	157
15	The role of transcription in shaping the spatial organization of the genome. Nature Reviews Molecular Cell Biology, 2019, 20, 327-337.	37.0	188
16	Rapid Quantitative Evaluation of CRISPR Genome Editing by TIDE and TIDER. Methods in Molecular Biology, 2019, 1961, 29-44.	0.9	83
17	Promoter-Intrinsic and Local Chromatin Features Determine Gene Repression in LADs. Cell, 2019, 177, 852-864.e14.	28.9	108
18	Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Research, 2018, 46, e58-e58.	14.5	147

#	Article	IF	CITATIONS
19	The large fraction of heterochromatin in Drosophila neurons is bound by both B-type lamin and HP1a. Epigenetics and Chromatin, 2018, 11, 65.	3.9	26
20	Scientific honesty and publicly shared lab notebooks. EMBO Reports, 2018, 19, .	4.5	0
21	Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks. Molecular Cell, 2018, 70, 801-813.e6.	9.7	194
22	DamID profiling of dynamic Polycomb-binding sites in Drosophila imaginal disc development and tumorigenesis. Epigenetics and Chromatin, 2018, 11, 27.	3.9	9
23	Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. Journal of Cell Biology, 2018, 217, 4025-4048.	5.2	275
24	CHRAC/ACF contribute to the repressive ground state of chromatin. Life Science Alliance, 2018, 1, e201800024.	2.8	26
25	Genome–nuclear lamina interactions: from cell populations to single cells. Current Opinion in Genetics and Development, 2017, 43, 67-72.	3.3	28
26	Functional Enhancer Screening in Single Cells. Molecular Cell, 2017, 66, 167-168.	9.7	1
27	Clustering of <i>Drosophila</i> housekeeping promoters facilitates their expression. Genome Research, 2017, 27, 1153-1161.	5.5	46
28	The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension. Cell, 2017, 169, 693-707.e14.	28.9	636
29	Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression. Cell, 2017, 169, 780-791.	28.9	798
30	Small chromosomal regions position themselves autonomously according to their chromatin class. Genome Research, 2017, 27, 922-933.	5.5	39
31	Genome-wide mapping of autonomous promoter activity in human cells. Nature Biotechnology, 2017, 35, 145-153.	17.5	97
32	<scp>RFTS</scp> â€dependent negative regulation of Dnmt1 by nucleosome structure and histone tails. FEBS Journal, 2017, 284, 3455-3469.	4.7	8
33	Massive reshaping of genome–nuclear lamina interactions during oncogene-induced senescence. Genome Research, 2017, 27, 1634-1644.	5.5	66
34	Comprehensive analysis of nucleocytoplasmic dynamics of mRNA in Drosophila cells. PLoS Genetics, 2017, 13, e1006929.	3.5	23
35	High-throughput assessment of context-dependent effects of chromatin proteins. Epigenetics and Chromatin, 2016, 9, 43.	3.9	13
36	A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin. Genes and Development, 2016, 30, 1645-1657.	5.9	95

#	Article	IF	Citations
37	Inducible DamID systems for genomic mapping of chromatin proteins in (i>Drosophila (/i>. Nucleic Acids Research, 2016, 44, 5646-5657.	14.5	42
38	A HUSH for transgene expression. Science, 2015, 348, 1433-1434.	12.6	7
39	A short guide to technology development in cell biology. Journal of Cell Biology, 2015, 208, 655-657.	5.2	2
40	Nuclear lamins are not required for laminaâ€associated domain organization in mouse embryonic stem cells. EMBO Reports, 2015, 16, 610-617.	4.5	98
41	Genome-wide Maps of Nuclear Lamina Interactions in Single Human Cells. Cell, 2015, 163, 134-147.	28.9	399
42	Stochastic genome-nuclear lamina interactions. Nucleus, 2014, 5, 124-130.	2.2	79
43	Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research, 2014, 42, e168-e168.	14.5	1,838
44	Mechanisms and dynamics of nuclear lamina–genome interactions. Current Opinion in Cell Biology, 2014, 28, 61-68.	5.4	103
45	Domains of genome-wide gene expression dysregulation in Down's syndrome. Nature, 2014, 508, 345-350.	27.8	298
46	In search of the determinants of enhancer–promoter interaction specificity. Trends in Cell Biology, 2014, 24, 695-702.	7.9	142
47	Using TRIP for genome-wide position effect analysis in cultured cells. Nature Protocols, 2014, 9, 1255-1281.	12.0	34
48	Chromatin Position Effects Assayed by Thousands of Reporters Integrated in Parallel. Cell, 2013, 154, 914-927.	28.9	283
49	The Genomic Landscape of the Somatic Linker Histone Subtypes H1.1 to H1.5 in Human Cells. Cell Reports, 2013, 3, 2142-2154.	6.4	110
50	Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence. Genome Research, 2013, 23, 270-280.	5.5	377
51	The Spatial Architecture of Chromosomes. , 2013, , 137-151.		8
52	Genome Architecture: Domain Organization of Interphase Chromosomes. Cell, 2013, 152, 1270-1284.	28.9	659
53	A Network Model of the Molecular Organization of Chromatin in Drosophila. Molecular Cell, 2013, 49, 759-771.	9.7	58
54	Single-Cell Dynamics of Genome-Nuclear Lamina Interactions. Cell, 2013, 153, 178-192.	28.9	609

#	Article	IF	CITATIONS
55	Hox in space. Nucleus, 2012, 3, 118-122.	2.2	8
56	The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in <i>S. pombe</i> . Nucleus, 2012, 3, 77-87.	2.2	60
57	Mapping of lamin A- and progerin-interacting genome regions. Chromosoma, 2012, 121, 447-464.	2.2	86
58	Interactions among Polycomb Domains Are Guided by Chromosome Architecture. PLoS Genetics, 2011, 7, e1001343.	3.5	156
59	Chromatin: constructing the big picture. EMBO Journal, 2011, 30, 1885-1895.	7.8	141
60	Genome–nuclear lamina interactions and gene regulation. Current Opinion in Cell Biology, 2010, 22, 320-325.	5.4	176
61	Genomics tools for unraveling chromosome architecture. Nature Biotechnology, 2010, 28, 1089-1095.	17.5	202
62	The Insulator Protein SU(HW) Fine-Tunes Nuclear Lamina Interactions of the Drosophila Genome. PLoS ONE, 2010, 5, e15013.	2.5	95
63	Bayesian network analysis of targeting interactions in chromatin. Genome Research, 2010, 20, 190-200.	5.5	48
64	Molecular Maps of the Reorganization of Genome-Nuclear Lamina Interactions during Differentiation. Molecular Cell, 2010, 38, 603-613.	9.7	916
65	Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila Cells. Cell, 2010, 143, 212-224.	28.9	854
66	Chromatin domains in higher eukaryotes: insights from genome-wide mapping studies. Chromosoma, 2009, 118, 25-36.	2.2	49
67	High-resolution mapping of heterochromatin redistribution in a Drosophila position-effect variegation model. Epigenetics and Chromatin, 2009, 2, 1.	3.9	45
68	Histone H1 binding is inhibited by histone variant H3.3. EMBO Journal, 2009, 28, 3635-3645.	7.8	97
69	Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature, 2008, 453, 948-951.	27.8	1,658
70	Global Chromatin Domain Organization of the Drosophila Genome. PLoS Genetics, 2008, 4, e1000045.	3.5	72
71	High-Resolution Mapping Reveals Links of HP1 with Active and Inactive Chromatin Components. PLoS Genetics, 2007, 3, e38.	3.5	113
72	SUUR joins separate subsets of PcG, HP1 and B-type lamin targets in <i>Drosophila</i> Science, 2007, 120, 2344-2351.	2.0	54

#	Article	IF	Citations
73	Detection of in vivo protein–DNA interactions using DamID in mammalian cells. Nature Protocols, 2007, 2, 1467-1478.	12.0	341
74	HP1 controls genomic targeting of four novel heterochromatin proteins in Drosophila. EMBO Journal, 2007, 26, 741-751.	7.8	48
75	[16] DamID: Mapping of In Vivo Protein–Genome Interactions Using Tethered DNA Adenine Methyltransferase. Methods in Enzymology, 2006, 410, 342-359.	1.0	115
76	Prospero Acts as a Binary Switch between Self-Renewal and Differentiation in DrosophilaÂNeuralÂStem Cells. Developmental Cell, 2006, 11, 775-789.	7.0	348
77	Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nature Genetics, 2006, 38, 694-699.	21.4	335
78	Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nature Genetics, 2006, 38, 1005-1014.	21.4	540
79	Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C). Nature Genetics, 2006, 38, 1348-1354.	21.4	1,219
80	Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Research, 2006, 16, 1493-1504.	5.5	141
81	Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12027-12032.	7.1	182
82	Mapping of genetic and epigenetic regulatory networks using microarrays. Nature Genetics, 2005, 37, S18-S24.	21.4	110
83	Whole-genome views of chromatin structure. Chromosome Research, 2005, 13, 289-298.	2.2	28
84	Genome-wide HP1 binding in <i>Drosophila</i> : Developmental plasticity and genomic targeting signals. Genome Research, 2005, 15, 1265-1273.	5.5	94
85	Protein-DNA interaction mapping using genomic tiling path microarrays in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9428-9433.	7.1	73
86	Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2580-2585.	7.1	114
87	Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes and Development, 2003, 17, 1101-1114.	5.9	352
88	Distinct HP1 and Su(var)3-9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes and Development, 2003, 17, 2825-2838.	5.9	153
89	Epigenomic profiling using microarrays. BioTechniques, 2003, 35, 346-357.	1.8	57
90	Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nature Genetics, 2002, 32, 438-442.	21.4	310

#	Article	IF	CITATIONS
91	Chromatin profiling using targeted DNA adenine methyltransferase. Nature Genetics, 2001, 27, 304-308.	21.4	303
92	Identification of in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase. Nature Biotechnology, 2000, 18, 424-428.	17.5	544