Jyotshna Kanungo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2530567/publications.pdf

Version: 2024-02-01

33	835	17 h-index	29
papers	citations		g-index
33	33	33	1138
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Zebrafish Model in Drug Safety Assessment. Current Pharmaceutical Design, 2014, 20, 5416-5429.	1.9	89
2	Cdk5 Modulation of Mitogen-activated Protein Kinase Signaling Regulates Neuronal Survival. Molecular Biology of the Cell, 2007, 18, 404-413.	2.1	76
3	Developmental toxicity assay using high content screening of zebrafish embryos. Journal of Applied Toxicology, 2015, 35, 261-272.	2.8	67
4	Ketamine induces motor neuron toxicity and alters neurogenic and proneural gene expression in zebrafish. Journal of Applied Toxicology, 2013, 33, 410-417.	2.8	62
5	Advancing toxicology research using in vivo high throughput toxicology with small fish models. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 435-452.	1.5	48
6	Acetyl l-carnitine protects motor neurons and Rohon-Beard sensory neurons against ketamine-induced neurotoxicity in zebrafish embryos. Neurotoxicology and Teratology, 2013, 39, 69-76.	2.4	46
7	Porcine brain microvessel endothelial cells show pro-inflammatory response to the size and composition of metallic nanoparticles. Drug Metabolism Reviews, 2014, 46, 224-231.	3.6	46
8	Downregulation of 14-3-3 Proteins in Alzheimer's Disease. Molecular Neurobiology, 2020, 57, 32-40.	4.0	38
9	In vivo imaging and quantitative analysis of changes in axon length using transgenic zebrafish embryos. Neurotoxicology and Teratology, 2011, 33, 618-623.	2.4	36
10	l-Carnitine rescues ketamine-induced attenuated heart rate and MAPK (ERK) activity in zebrafish embryos. Reproductive Toxicology, 2012, 33, 205-212.	2.9	35
11	Ketamine attenuates cytochrome p450 aromatase gene expression and estradiolâ€17β levels in zebrafish early life stages. Journal of Applied Toxicology, 2014, 34, 480-488.	2.8	30
12	Distinct effects of ketamine and acetyl l-carnitine on the dopamine system in zebrafish. Neurotoxicology and Teratology, 2016, 54, 52-60.	2.4	28
13	DNA-dependent protein kinase and DNA repair: relevance to Alzheimer's disease. Alzheimer's Research and Therapy, 2013, 5, 13.	6.2	27
14	Nicotine alters the expression of molecular markers of endocrine disruption in zebrafish. Neuroscience Letters, 2012, 526, 133-137.	2.1	25
15	Downregulation of 14-3-3 Proteins in a Kainic Acid-Induced Neurotoxicity Model. Molecular Neurobiology, 2018, 55, 122-129.	4.0	20
16	Cyclosporine exacerbates ketamine toxicity in zebrafish: Mechanistic studies on drug–drug interaction. Journal of Applied Toxicology, 2017, 37, 1438-1447.	2.8	20
17	Opposing effects of ketamine and acetyl l-carnitine on the serotonergic system of zebrafish. Neuroscience Letters, 2015, 607, 17-22.	2.1	19
18	Retinoic Acid Signaling in P19 Stem Cell Differentiation. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 1184-1198.	1.7	18

#	Article	IF	CITATIONS
19	Acetyl <scp>L</scp> â€carnitine targets adenosine triphosphate synthase in protecting zebrafish embryos from toxicities induced by verapamil and ketamine: An ⟨i⟩in vivo⟨/i⟩ assessment. Journal of Applied Toxicology, 2017, 37, 192-200.	2.8	17
20	Mechanistic studies on ketamine-induced mitochondrial toxicity in zebrafish embryos. Neurotoxicology and Teratology, 2018, 69, 63-72.	2.4	17
21	N-acetylcysteine prevents ketamine-induced adverse effects on development, heart rate and monoaminergic neurons in zebrafish. Neuroscience Letters, 2018, 682, 56-61.	2.1	14
22	Ketamine-induced attenuation of reactive oxygen species in zebrafish is prevented by acetyl l-carnitine in vivo. Neuroscience Letters, 2019, 706, 36-42.	2.1	13
23	Autoimmunity to RNA polymerase II is focused at the carboxyl terminal domain of the large subunit. Arthritis and Rheumatism, 1996, 39, 1886-1891.	6.7	6
24	Antidepressant Actions of Ketamine: Potential Role of L-Type Calcium Channels. Chemical Research in Toxicology, 2021, 34, 1198-1207.	3.3	6
25	Disruption of blastomeric F-actin: a potential early biomarker of developmental toxicity in zebrafish. Molecular and Cellular Biochemistry, 2011, 353, 283-290.	3.1	5
26	Exogenously expressed human Ku70 stabilizes Ku80 in Xenopus oocytes and induces heterologous DNA-PK catalytic activity. Molecular and Cellular Biochemistry, 2010, 338, 291-298.	3.1	4
27	Menin induces endodermal differentiation in aggregated P19 stem cells by modulating the retinoic acid receptors. Molecular and Cellular Biochemistry, 2012, 359, 95-104.	3.1	4
28	Nifedipine toxicity is exacerbated by acetyl l â€carnitine but alleviated by lowâ€dose ketamine in zebrafish in vivo. Journal of Applied Toxicology, 2020, 40, 257-269.	2.8	4
29	Effect of ketamine on gene expression in zebrafish embryos. Journal of Applied Toxicology, 2021, 41, 2083-2089.	2.8	4
30	Puromycin-resistant lentiviral control shRNA vector, pLKO.1 induces unexpected cellular differentiation of P19 embryonic stem cells. Biochemical and Biophysical Research Communications, 2017, 486, 481-485.	2.1	3
31	N-acetylcysteine prevents verapamil-induced cardiotoxicity with no effect on the noradrenergic arch-associated neurons in zebrafish. Food and Chemical Toxicology, 2020, 144, 111559.	3.6	3
32	Effects of acetyl Lâ€carnitine on zebrafish embryos: Phenotypic and gene expression studies. Journal of Applied Toxicology, 2021, 41, 256-264.	2.8	3
33	Tumor Suppressors and Endodermal Differentiation of P19 Embryonic Stem Cells. Cell & Developmental Biology, 2015, 04, .	0.3	2