
Claudio Counoupas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2530273/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Direct Binding of Human NK Cell Natural Cytotoxicity Receptor NKp44 to the Surfaces of Mycobacteria and Other Bacteria. Infection and Immunity, 2008, 76, 1719-1727.	2.2	131
2	A composite fibrin-based scaffold for controlled delivery of bioactive pro-angiogenetic growth factors. Journal of Controlled Release, 2010, 142, 14-21.	9.9	67
3	Delta inulin-based adjuvants promote the generation of polyfunctional CD4+ T cell responses and protection against Mycobacterium tuberculosis infection. Scientific Reports, 2017, 7, 8582.	3.3	57
4	The ESX-5 Associated eccB5-eccC5 Locus Is Essential for Mycobacterium tuberculosis Viability. PLoS ONE, 2012, 7, e52059.	2.5	49
5	A single dose, BCG-adjuvanted COVID-19 vaccine provides sterilising immunity against SARS-CoV-2 infection. Npj Vaccines, 2021, 6, 143.	6.0	47
6	Mucosal delivery of a multistage subunit vaccine promotes development of lung-resident memory T cells and affords interleukin-17-dependent protection against pulmonary tuberculosis. Npj Vaccines, 2020, 5, 105.	6.0	45
7	Mycobacterium tuberculosis components expressed during chronic infection of the lung contribute to long-term control of pulmonary tuberculosis in mice. Npj Vaccines, 2016, 1, 16012.	6.0	24
8	The generation of Tâ€cell memory to protect against tuberculosis. Immunology and Cell Biology, 2019, 97, 656-663.	2.3	23
9	Deciphering protective immunity against tuberculosis: implications for vaccine development. Expert Review of Vaccines, 2019, 18, 353-364.	4.4	22
10	Protective efficacy of recombinant BCG over-expressing protective, stage-specific antigens of Mycobacterium tuberculosis. Vaccine, 2018, 36, 2619-2629.	3.8	16
11	The Ag85B protein of the BCG vaccine facilitates macrophage uptake but is dispensable for protection against aerosol Mycobacterium tuberculosis infection. Vaccine, 2016, 34, 2608-2615.	3.8	14
12	Novel vaccination approaches to prevent tuberculosis in children. Pneumonia (Nathan Qld), 2016, 8, 18.	6.1	11
13	Virulence Mechanisms of Mycobacterium abscessus: Current Knowledge and Implications for Vaccine Design. Frontiers in Microbiology, 2022, 13, 842017.	3.5	9
14	Intrapulmonary vaccination with delta-inulin adjuvant stimulates non-polarised chemotactic signalling and diverse cellular interaction. Mucosal Immunology, 2021, 14, 762-773.	6.0	8
15	TCR Affinity Controls the Dynamics but Not the Functional Specification of the Antimycobacterial CD4+ T Cell Response. Journal of Immunology, 2021, 206, 2875-2887.	0.8	5
16	Advax adjuvant formulations promote protective immunity against aerosol Mycobacterium tuberculosis in the absence of deleterious inflammation and reactogenicity. Vaccine, 2021, 39, 1990-1996.	3.8	4
17	TheBCG1619cgene is not essential for invasion and intracellular persistence ofMycobacterium bovisBCG in human THP-1 and A549 cell lines. Canadian Journal of Microbiology, 2009, 55, 975-982.	1.7	3
18	Characterization of the Protective Immune Responses Conferred by Recombinant BCG Overexpressing Components of Mycobacterium tuberculosis Sec Protein Export System. Vaccines, 2022, 10, 945.	4.4	3

#	Article	IF	CITATIONS
19	Influence of phthiocerol dimycocerosate on CD4+ T cell priming and persistence during Mycobacterium tuberculosis infection. Tuberculosis, 2016, 99, 25-30.	1.9	1