
Madhav Bhatia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2530156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gases in Sepsis: Novel Mediators and Therapeutic Targets. International Journal of Molecular Sciences, 2022, 23, 3669.	1.8	12
2	Two Monoclonal Antibodies That Specifically Recognize Aspergillus Cell Wall Antigens and Can Detect Circulating Antigens in Infected Mice. International Journal of Molecular Sciences, 2022, 23, 252.	1.8	2
3	Monoclonal Antibodies and Invasive Aspergillosis: Diagnostic and Therapeutic Perspectives. International Journal of Molecular Sciences, 2022, 23, 5563.	1.8	7
4	Hydrogen Sulfide in Inflammation: A Novel Mediator and Therapeutic Target. Antioxidants and Redox Signaling, 2021, 34, 1368-1377.	2.5	37
5	Hydrogen Sulfide and its Interaction with Other Players in Inflammation. Advances in Experimental Medicine and Biology, 2021, 1315, 129-159.	0.8	7
6	Gut microbiome in acute pancreatitis: A review based on current literature. World Journal of Gastroenterology, 2021, 27, 5019-5036.	1.4	20
7	Gut Microbiota Dysbiosis as a Target for Improved Post-Surgical Outcomes and Improved Patient Care: A Review of Current Literature. Shock, 2021, 55, 441-454.	1.0	11
8	Role of Hydrogen Sulfide, Substance P and Adhesion Molecules in Acute Pancreatitis. International Journal of Molecular Sciences, 2021, 22, 12136.	1.8	7
9	Hydrogen Sulfide Treatment Improves Post-Infarct Remodeling and Long-Term Cardiac Function in CSE Knockout and Wild-Type Mice. International Journal of Molecular Sciences, 2020, 21, 4284.	1.8	21
10	Cystathionine-Gamma-Lyase-Derived Hydrogen Sulfide-Regulated Substance P Modulates Liver Sieve Fenestrations in Caecal Ligation and Puncture-Induced Sepsis. International Journal of Molecular Sciences, 2019, 20, 3191.	1.8	11
11	<i>Clostridium butyricum</i> Strains Suppress Experimental Acute Pancreatitis by Maintaining Intestinal Homeostasis. Molecular Nutrition and Food Research, 2019, 63, e1801419.	1.5	36
12	Roles of airway smooth muscle dysfunction in chronic obstructive pulmonary disease. Journal of Translational Medicine, 2018, 16, 262.	1.8	30
13	Lactose Induces Phenotypic and Functional Changes of Neutrophils and Macrophages to Alleviate Acute Pancreatitis in Mice. Frontiers in Immunology, 2018, 9, 751.	2.2	28
14	Hydrogen sulfide acts as a pro-inflammatory mediator in rheumatic disease. International Journal of Rheumatic Diseases, 2017, 20, 182-189.	0.9	31
15	Understanding toxicology: mechanisms and applications. Cell Biology and Toxicology, 2017, 33, 1-4.	2.4	8
16	Fasting levels of insulin and amylin after acute pancreatitis are associated with pro-inflammatory cytokines. Archives of Physiology and Biochemistry, 2017, 123, 238-248.	1.0	27
17	Circulating levels of hydrogen sulfide and substance P in patients with sepsis. Journal of Infection, 2017, 75, 293-300.	1.7	16
18	Roles of Mitochondrial DNA in Energy Metabolism. Advances in Experimental Medicine and Biology, 2017, 1038, 71-83.	0.8	13

Μασήαν Βηάτια

#	Article	IF	CITATIONS
19	Recent Advances on Nutrition in Treatment of Acute Pancreatitis. Frontiers in Immunology, 2017, 8, 762.	2.2	47
20	Sulforaphane Protects Pancreatic Acinar Cell Injury by Modulating Nrf2-Mediated Oxidative Stress and NLRP3 Inflammatory Pathway. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12.	1.9	78
21	Cystathionine-Gamma-Lyase Gene Deletion Protects Mice against Inflammation and Liver Sieve Injury following Polymicrobial Sepsis. PLoS ONE, 2016, 11, e0160521.	1.1	31
22	Cathelicidin-related antimicrobial peptide modulates the severity of acute pancreatitis in mice. Molecular Medicine Reports, 2016, 13, 3881-3885.	1.1	21
23	Therapeutic implications of innate immune system in acute pancreatitis. Expert Opinion on Therapeutic Targets, 2016, 20, 73-87.	1.5	44
24	LPS Up-Regulates Cystathionine γ -Lyase Gene Expression in Primary Human Macrophages via NF-κB/ERK Pathway. Inflammation and Allergy: Drug Targets, 2016, 14, 99-104.	1.8	23
25	Mediators of Inflammation: Inflammation in Cancer, Chronic Diseases, and Wound Healing. Mediators of Inflammation, 2015, 2015, 1-2.	1.4	21
26	Alteration of the renin-angiotensin system in caerulein induced acute pancreatitis in the mouse. Pancreatology, 2015, 15, 647-653.	0.5	5
27	H2S and Substance P in Inflammation. Methods in Enzymology, 2015, 555, 195-205.	0.4	14
28	H2S and Inflammation: An Overview. Handbook of Experimental Pharmacology, 2015, 230, 165-180.	0.9	59
29	Inhibition of Hydrogen Sulfide Production by Gene Silencing Attenuates Inflammatory Activity by Downregulation of NF-I°B and MAP Kinase Activity in LPS-Activated RAW 264.7 Cells. BioMed Research International, 2014, 2014, 1-7.	0.9	20
30	ACE and ACE2 in Inflammation: A Tale of Two Enzymes. Inflammation and Allergy: Drug Targets, 2014, 13, 224-234.	1.8	126
31	Role of Hydrogen Sulfide in the Pathology of Inflammation. Scientifica, 2012, 2012, 1-12.	0.6	50
32	Role of Chemokines in the Pathogenesis of Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 566-572.	1.4	201
33	Hydrogen sulfide induces ICAM-1 expression and neutrophil adhesion to caerulein-treated pancreatic acinar cells through NF-I®B and Src-family kinases pathway. Experimental Cell Research, 2010, 316, 1625-1636.	1.2	54
34	Acute pancreatitis as a model of SIRS. Frontiers in Bioscience - Landmark, 2009, Volume, 2042.	3.0	64
35	Sepsis as a model of SIRS. Frontiers in Bioscience - Landmark, 2009, Volume, 4703.	3.0	66
36	Role of Protein Kinase C and Phosphoinositide 3â€Kinaseâ€Akt in Substance Pâ€Induced Proinflammatory Pathways in Mouse Macrophages. FASEB Journal, 2009, 23, 762.2.	0.2	0

Μασήαν Βηάτια

#	Article	IF	CITATIONS
37	Proâ€inflammatory effects of hydrogen sulphide on substance P in caeruleinâ€induced acute pancreatitis. Journal of Cellular and Molecular Medicine, 2008, 12, 580-590.	1.6	59
38	TREATMENT WITH H2S-RELEASING DICLOFENAC PROTECTS MICE AGAINST ACUTE PANCREATITIS-ASSOCIATED LUNG INJURY. Shock, 2008, 29, 84-88.	1.0	50
39	Neurokininâ€1 Receptor antagonist treatment alleviates CLPâ€induced polymicrobial sepsis in mice, acting via NFkappaB. FASEB Journal, 2008, 22, 918.5.	0.2	0
40	Treatment with antileukinate, a CXCR2 chemokine receptor antagonist, protects mice against acute pancreatitis and associated lung injury. Regulatory Peptides, 2007, 138, 40-48.	1.9	56
41	Role of substance P in hydrogen sulfide-induced pulmonary inflammation in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L896-L904.	1.3	95
42	Hydrogen sulfide as a vasodilator. IUBMB Life, 2005, 57, 603-606.	1.5	127
43	Hydrogen sulphide is a mediator of carrageenan-induced hindpaw oedema in the rat. British Journal of Pharmacology, 2005, 145, 141-144.	2.7	140
44	Molecular mimicry in autoimmune pancreatitis: an interesting idea. Journal of Cellular and Molecular Medicine, 2005, 9, 745-745.	1.6	5
45	Treatment with bindarit, a blocker of MCP-1 synthesis, protects mice against acute pancreatitis. American Journal of Physiology - Renal Physiology, 2005, 288, G1259-G1265.	1.6	126
46	Role of hydrogen sulfide in acute pancreatitis and associated lung injury. FASEB Journal, 2005, 19, 1-17.	0.2	275
47	Pathophysiology of acute pancreatitis. Pancreatology, 2005, 5, 132-144.	0.5	418
48	Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. Journal of Pathology, 2004, 202, 145-156.	2.1	1,018
49	Apoptosis versus necrosis in acute pancreatitis. American Journal of Physiology - Renal Physiology, 2004, 286, G189-G196.	1.6	172
50	1-Cyano-2-Hydroxy-3-Butene: A Plant Nitrile that Induces Apoptosis in Pancreatic Acinar Cells and Reduces the Severity of Acute Pancreatitis. , 2004, , 130-138.		0
51	Preprotachykinin-A gene deletion protects mice against acute pancreatitis and associated lung injury. American Journal of Physiology - Renal Physiology, 2003, 284, G830-G836.	1.6	73
52	MCP-1 but not CINC synthesis is increased in rat pancreatic acini in response to cerulein hyperstimulation. American Journal of Physiology - Renal Physiology, 2002, 282, G77-G85.	1.6	45
53	Inflammatory mediators in acute pancreatitis. , 2000, 190, 117-125.		450