
Chaowei Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2530048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surfactant-Encapsulated Polyoxometalate Complex as a Cathode Interlayer for Nonfullerene Polymer Solar Cells. CCS Chemistry, 2022, 4, 975-986.	7.8	5
2	An Organic–Inorganic Hybrid Material Based on Benzo[ghi]perylenetri-imide and Cyclic Titanium-Oxo Cluster for Efficient Perovskite and Organic Solar Cells. CCS Chemistry, 2022, 4, 880-888.	7.8	32
3	TiO2 nanoparticles via simple surface modification as cathode interlayer for efficient organic solar cells. Organic Electronics, 2022, 101, 106422.	2.6	8
4	Functional Ligand-Decorated ZnO Nanoparticles as Cathode Interlayers for Efficient Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 1291-1297.	5.1	14
5	Naphthobistriazole based non-fused electron acceptors for organic solar cells. Journal of Materials Chemistry C, 2022, 10, 8070-8076.	5.5	7
6	Mechanical-robust and recyclable polyimide substrates coordinated with cyclic Ti-oxo cluster for flexible organic solar cells. Npj Flexible Electronics, 2022, 6, .	10.7	17
7	Simple Sn-based coordination complex as cathode interlayer for efficient organic solar cells. Organic Electronics, 2022, 108, 106577.	2.6	1
8	Mn2Cl4 Cluster Based Two-Dimensional Coordination Polymer for Dichromate Sensing Property. Journal of Cluster Science, 2021, 32, 235-241.	3.3	0
9	Titanium–oxo cluster reinforced gel polymer electrolyte enabling lithium–sulfur batteries with high gravimetric energy densities. Energy and Environmental Science, 2021, 14, 975-985.	30.8	69
10	An Organic–Inorganic Hybrid Electrolyte as a Cathode Interlayer for Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 8526-8531.	13.8	54
11	An Organic–Inorganic Hybrid Electrolyte as a Cathode Interlayer for Efficient Organic Solar Cells. Angewandte Chemie, 2021, 133, 8607-8612.	2.0	16
12	Ti-Oxo Clusters with Peripheral Alkyl Groups as Cathode Interlayers for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 39671-39677.	8.0	14
13	Fullerene as an additive for increasing the efficiency of organic solar cells to more than 17%. Journal of Colloid and Interface Science, 2021, 601, 70-77.	9.4	15
14	Recent progress of thin-film photovoltaics for indoor application. Chinese Chemical Letters, 2020, 31, 643-653.	9.0	106
15	A CuBr Metal–Organic Framework: From Two Dimensional Net to Quasi-Three Dimensional Frame Through Encapsulated Cu2Br2 Cluster. Journal of Cluster Science, 2020, 31, 1207-1212.	3.3	1
16	Thieno[3,4- <i>c</i>]pyrrole-4,6-dione-based conjugated polymers for organic solar cells. Chemical Communications, 2020, 56, 10394-10408.	4.1	23
17	Atomically Precise, Thiolated Copper–Hydride Nanoclusters as Single-Site Hydrogenation Catalysts for Ketones in Mild Conditions. ACS Nano, 2019, 13, 5975-5986.	14.6	138
18	Diketopyrrolopyrrole-based conjugated materials for non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 10174-10199.	10.3	111

CHAOWEI ZHAO

#	Article	IF	CITATIONS
19	From Symmetry Breaking to Unraveling the Origin of the Chirality of Ligated Au ₁₃ Cu ₂ Nanoclusters. Angewandte Chemie - International Edition, 2018, 57, 3421-3425.	13.8	88
20	From Symmetry Breaking to Unraveling the Origin of the Chirality of Ligated Au ₁₃ Cu ₂ Nanoclusters. Angewandte Chemie, 2018, 130, 3479-3483.	2.0	23
21	Microporous Cyclic Titaniumâ€Oxo Clusters with Labile Surface Ligands. Angewandte Chemie - International Edition, 2017, 56, 16252-16256.	13.8	90
22	Microporous Cyclic Titaniumâ€Oxo Clusters with Labile Surface Ligands. Angewandte Chemie, 2017, 129, 16470-16474.	2.0	21