Xianhui Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2529898/publications.pdf

Version: 2024-02-01

218677 265206 1,975 42 43 26 h-index citations g-index papers 45 45 45 1671 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Plastic waste upcycling toward a circular economy. Chemical Engineering Journal, 2022, 428, 131928.	12.7	169
2	Recycling of natural fiber composites: Challenges and opportunities. Resources, Conservation and Recycling, 2022, 177, 105962.	10.8	62
3	Exploiting chitosan to improve the interface of nanocellulose reinforced polymer composites. Cellulose, 2022, 29, 3859-3870.	4.9	12
4	Hydrogen bond–induced aqueous-phase surface modification of nanocellulose and its mechanically strong composites. Journal of Materials Science, 2022, 57, 8127-8138.	3.7	4
5	Pretreatment of lignocellulosic feedstocks for cellulose nanofibril production. Cellulose, 2022, 29, 4835-4876.	4.9	22
6	Surface-modified and oven-dried microfibrillated cellulose reinforced biocomposites: Cellulose network enabled high performance. Carbohydrate Polymers, 2021, 256, 117525.	10.2	37
7	Highly Efficient Urea Oxidation via Nesting Nano-Nickel Oxide in Eggshell Membrane-Derived Carbon. ACS Sustainable Chemistry and Engineering, 2021, 9, 1703-1713.	6.7	85
8	Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Applied Materials Today, 2021, 24, 101078.	4.3	100
9	Review on Nonconventional Fibrillation Methods of Producing Cellulose Nanofibrils and Their Applications. Biomacromolecules, 2021, 22, 4037-4059.	5.4	45
10	Recycled Cardboard Containers as a Low Energy Source for Cellulose Nanofibrils and Their Use in Poly(<scp>I</scp> -lactide) Nanocomposites. ACS Sustainable Chemistry and Engineering, 2021, 9, 13460-13470.	6.7	14
11	Poly(lactic acid) Toughening through Chain End Engineering. ACS Applied Polymer Materials, 2020, 2, 411-417.	4.4	34
12	Towards industrial-scale production of cellulose nanocomposites using melt processing: A critical review on structure-processing-property relationships. Composites Part B: Engineering, 2020, 201, 108297.	12.0	41
13	Bio-treatment of poplar via amino acid for interface control in biocomposites. Composites Part B: Engineering, 2020, 199, 108276.	12.0	16
14	High-Strength Polylactic Acid (PLA) Biocomposites Reinforced by Epoxy-Modified Pine Fibers. ACS Sustainable Chemistry and Engineering, 2020, 8, 13236-13247.	6.7	59
15	Synthesis, Characterization, and Utilization of a Lignin-Based Adsorbent for Effective Removal of Azo Dye from Aqueous Solution. ACS Omega, 2020, 5, 2865-2877.	3.5	91
16	Biogas Reforming to Syngas: A Review. IScience, 2020, 23, 101082.	4.1	109
17	Toughening by Nanodroplets: Polymer–Droplet Biocomposite with Anomalous Toughness. Macromolecules, 2020, 53, 4568-4576.	4.8	25
18	Poplar as Biofiber Reinforcement in Composites for Large-Scale 3D Printing. ACS Applied Bio Materials, 2019, 2, 4557-4570.	4.6	52

#	Article	IF	CITATIONS
19	Conversion of landfill gas to liquid fuels through a TriFTS (tri-reforming and Fischer–Tropsch) Tj ETQq1 1 0.7843	14. ₉ gBT /C	Dyerlock 10
20	NiMg/Ceria-Zirconia Cylindrical Pellet Catalysts for Tri-reforming of Surrogate Biogas. Industrial & Engineering Chemistry Research, 2018, 57, 845-855.	3.7	22
21	Tri-reforming of surrogate biogas over Ni/Mg/ceria–zirconia/alumina pellet catalysts. Chemical Engineering Communications, 2018, 205, 1129-1142.	2.6	15
22	Converting Alkali Lignin to Biofuels over NiO/HZSMâ€5 Catalysts Using a Twoâ€Stage Reactor. Chemical Engineering and Technology, 2017, 40, 1069-1077.	1.5	8
23	Review of Heterogeneous Catalysts for Catalytically Upgrading Vegetable Oils into Hydrocarbon Biofuels. Catalysts, 2017, 7, 83.	3.5	77
24	Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading. Catalysts, 2016, 6, 195.	3.5	114
25	Development of hydrocarbon biofuel from sunflower seed and sunflower meat oils over ZSM-5. Journal of Renewable and Sustainable Energy, 2016, 8, .	2.0	43
26	Hydroprocessing of carinata oil for hydrocarbon biofuel over Mo-Zn/Al2O3. Applied Catalysis B: Environmental, 2016, 196, 41-49.	20.2	53
27	Biofuel production using Pd/Zn synergistically catalyzed hydrodeoxygenation applied at bio oil extracted in biomass pyrolysis process. International Journal of Energy Research, 2016, 40, 1724-1730.	4.5	11
28	Effects of cold press operating conditions on vegetable oil fatty acid profiles. International Journal of Green Energy, 2016, 13, 990-999.	3.8	4
29	Conversion of Prairie Cordgrass to Hydrocarbon Biofuel over Coâ€Mo/HZSMâ€5 Using a Twoâ€Stage Reactor System. Energy Technology, 2016, 4, 706-713.	3.8	33
30	Hydrodeoxygenation of prairie cordgrass bio-oil over Ni based activated carbon synergistic catalysts combined with different metals. New Biotechnology, 2016, 33, 440-448.	4.4	45
31	Upgrading pine sawdust pyrolysis oil to green biofuels by HDO over zinc-assisted Pd/C catalyst. Energy Conversion and Management, 2016, 115, 8-16.	9.2	62
32	Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel. New Biotechnology, 2015, 32, 300-312.	4.4	77
33	Converting pine sawdust to advanced biofuel over HZSM-5 using a two-stage catalytic pyrolysis reactor. Journal of Analytical and Applied Pyrolysis, 2015, 111, 148-155.	5.5	49
34	Catalytic cracking of inedible camelina oils to hydrocarbon fuels over bifunctional Zn/ZSM-5 catalysts. Korean Journal of Chemical Engineering, 2015, 32, 1528-1541.	2.7	33
35	Catalytic cracking of carinata oil for hydrocarbon biofuel over fresh and regenerated Zn/Na-ZSM-5. Applied Catalysis A: General, 2015, 507, 44-55.	4.3	58
36	Optimization of catalytic cracking process for upgrading camelina oil to hydrocarbon biofuel. Industrial Crops and Products, 2015, 77, 516-526.	5.2	58

#	Article	IF	CITATION
37	Catalytic cracking of camelina oil for hydrocarbon biofuel over ZSM-5-Zn catalyst. Fuel Processing Technology, 2015, 139, 117-126.	7.2	103
38	Directly catalytic upgrading bio-oil vapor produced by prairie cordgrass pyrolysis over Ni/HZSM-5 using a two stage reactor. AIMS Energy, 2015, 3, 227-240.	1.9	26
39	First stage of bio-jet fuel production: non-food sunflower oil extraction using cold press method. AIMS Energy, 2014, 2, 193-209.	1.9	21
40	Investigated Cold Press Oil Extraction from Non-Edible Oilseeds for Future Bio-Jet Fuels Production. Journal of Sustainable Bioenergy Systems, 2014, 04, 199-214.	0.8	16
41	Enhanced conversion efficiency of dye-sensitized titanium dioxide solar cells by Ca-doping. Journal of Alloys and Compounds, 2013, 548, 161-165.	5.5	25
42	Solid Waste Gasification: Comparison of Single- and Multi-Staged Reactors. , 0, , .		2
43	Epoxy as Filler or Matrix for Polymer Composites. , 0, , .		9