Xianhui Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2529898/publications.pdf Version: 2024-02-01

ΧιλΝΗΠΙΖΗΛΟ

#	Article	IF	CITATIONS
1	Plastic waste upcycling toward a circular economy. Chemical Engineering Journal, 2022, 428, 131928.	12.7	169
2	Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading. Catalysts, 2016, 6, 195.	3.5	114
3	Biogas Reforming to Syngas: A Review. IScience, 2020, 23, 101082.	4.1	109
4	Catalytic cracking of camelina oil for hydrocarbon biofuel over ZSM-5-Zn catalyst. Fuel Processing Technology, 2015, 139, 117-126.	7.2	103
5	Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Applied Materials Today, 2021, 24, 101078.	4.3	100
6	Synthesis, Characterization, and Utilization of a Lignin-Based Adsorbent for Effective Removal of Azo Dye from Aqueous Solution. ACS Omega, 2020, 5, 2865-2877.	3.5	91
7	Highly Efficient Urea Oxidation via Nesting Nano-Nickel Oxide in Eggshell Membrane-Derived Carbon. ACS Sustainable Chemistry and Engineering, 2021, 9, 1703-1713.	6.7	85
8	Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel. New Biotechnology, 2015, 32, 300-312.	4.4	77
9	Review of Heterogeneous Catalysts for Catalytically Upgrading Vegetable Oils into Hydrocarbon Biofuels. Catalysts, 2017, 7, 83.	3.5	77
10	Upgrading pine sawdust pyrolysis oil to green biofuels by HDO over zinc-assisted Pd/C catalyst. Energy Conversion and Management, 2016, 115, 8-16.	9.2	62
11	Recycling of natural fiber composites: Challenges and opportunities. Resources, Conservation and Recycling, 2022, 177, 105962.	10.8	62
12	High-Strength Polylactic Acid (PLA) Biocomposites Reinforced by Epoxy-Modified Pine Fibers. ACS Sustainable Chemistry and Engineering, 2020, 8, 13236-13247.	6.7	59
13	Catalytic cracking of carinata oil for hydrocarbon biofuel over fresh and regenerated Zn/Na-ZSM-5. Applied Catalysis A: General, 2015, 507, 44-55.	4.3	58
14	Optimization of catalytic cracking process for upgrading camelina oil to hydrocarbon biofuel. Industrial Crops and Products, 2015, 77, 516-526.	5.2	58
15	Hydroprocessing of carinata oil for hydrocarbon biofuel over Mo-Zn/Al2O3. Applied Catalysis B: Environmental, 2016, 196, 41-49.	20.2	53
16	Poplar as Biofiber Reinforcement in Composites for Large-Scale 3D Printing. ACS Applied Bio Materials, 2019, 2, 4557-4570.	4.6	52
17	Converting pine sawdust to advanced biofuel over HZSM-5 using a two-stage catalytic pyrolysis reactor. Journal of Analytical and Applied Pyrolysis, 2015, 111, 148-155.	5.5	49
18	Hydrodeoxygenation of prairie cordgrass bio-oil over Ni based activated carbon synergistic catalysts combined with different metals. New Biotechnology, 2016, 33, 440-448.	4.4	45

Χιανημί Ζηδο

#	Article	IF	CITATIONS
19	Review on Nonconventional Fibrillation Methods of Producing Cellulose Nanofibrils and Their Applications. Biomacromolecules, 2021, 22, 4037-4059.	5.4	45
20	Development of hydrocarbon biofuel from sunflower seed and sunflower meat oils over ZSM-5. Journal of Renewable and Sustainable Energy, 2016, 8, .	2.0	43
21	Towards industrial-scale production of cellulose nanocomposites using melt processing: A critical review on structure-processing-property relationships. Composites Part B: Engineering, 2020, 201, 108297.	12.0	41
22	Surface-modified and oven-dried microfibrillated cellulose reinforced biocomposites: Cellulose network enabled high performance. Carbohydrate Polymers, 2021, 256, 117525.	10.2	37
23	Poly(lactic acid) Toughening through Chain End Engineering. ACS Applied Polymer Materials, 2020, 2, 411-417.	4.4	34
24	Catalytic cracking of inedible camelina oils to hydrocarbon fuels over bifunctional Zn/ZSM-5 catalysts. Korean Journal of Chemical Engineering, 2015, 32, 1528-1541.	2.7	33
25	Conversion of Prairie Cordgrass to Hydrocarbon Biofuel over Coâ€Mo/HZSMâ€5 Using a Twoâ€Stage Reactor System. Energy Technology, 2016, 4, 706-713.	3.8	33
26	Conversion of landfill gas to liquid fuels through a TriFTS (tri-reforming and Fischer–Tropsch) Tj ETQq0 0 0 rgB	[/Qverloct	10 Tf 50 46
27	Directly catalytic upgrading bio-oil vapor produced by prairie cordgrass pyrolysis over Ni/HZSM-5 using a two stage reactor. AIMS Energy, 2015, 3, 227-240.	1.9	26
28	Enhanced conversion efficiency of dye-sensitized titanium dioxide solar cells by Ca-doping. Journal of Alloys and Compounds, 2013, 548, 161-165.	5.5	25
29	Toughening by Nanodroplets: Polymer–Droplet Biocomposite with Anomalous Toughness. Macromolecules, 2020, 53, 4568-4576.	4.8	25
30	NiMg/Ceria-Zirconia Cylindrical Pellet Catalysts for Tri-reforming of Surrogate Biogas. Industrial & Engineering Chemistry Research, 2018, 57, 845-855.	3.7	22
31	Pretreatment of lignocellulosic feedstocks for cellulose nanofibril production. Cellulose, 2022, 29, 4835-4876.	4.9	22
32	First stage of bio-jet fuel production: non-food sunflower oil extraction using cold press method. AIMS Energy, 2014, 2, 193-209.	1.9	21
33	Bio-treatment of poplar via amino acid for interface control in biocomposites. Composites Part B: Engineering, 2020, 199, 108276.	12.0	16
34	Investigated Cold Press Oil Extraction from Non-Edible Oilseeds for Future Bio-Jet Fuels Production. Journal of Sustainable Bioenergy Systems, 2014, 04, 199-214.	0.8	16
35	Tri-reforming of surrogate biogas over Ni/Mg/ceria–zirconia/alumina pellet catalysts. Chemical Engineering Communications, 2018, 205, 1129-1142.	2.6	15
36	Recycled Cardboard Containers as a Low Energy Source for Cellulose Nanofibrils and Their Use in Poly(<scp>l</scp> -lactide) Nanocomposites. ACS Sustainable Chemistry and Engineering, 2021, 9, 13460-13470.	6.7	14

Χιανημι Ζηάο

#	Article	IF	CITATIONS
37	Exploiting chitosan to improve the interface of nanocellulose reinforced polymer composites. Cellulose, 2022, 29, 3859-3870.	4.9	12
38	Biofuel production using Pd/Zn synergistically catalyzed hydrodeoxygenation applied at bio oil extracted in biomass pyrolysis process. International Journal of Energy Research, 2016, 40, 1724-1730.	4.5	11
39	Epoxy as Filler or Matrix for Polymer Composites. , 0, , .		9
40	Converting Alkali Lignin to Biofuels over NiO/HZSMâ€5 Catalysts Using a Twoâ€Stage Reactor. Chemical Engineering and Technology, 2017, 40, 1069-1077.	1.5	8
41	Effects of cold press operating conditions on vegetable oil fatty acid profiles. International Journal of Green Energy, 2016, 13, 990-999.	3.8	4
42	Hydrogen bond–induced aqueous-phase surface modification of nanocellulose and its mechanically strong composites. Journal of Materials Science, 2022, 57, 8127-8138.	3.7	4
43	Solid Waste Gasification: Comparison of Single- and Multi-Staged Reactors. , 0, , .		2