Jian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2529815/publications.pdf

Version: 2024-02-01

		136740	155451
55	3,502	32	55
papers	citations	h-index	g-index
55	55	55	4513
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Photoactive Chiral Metal–Organic Frameworks for Light-Driven Asymmetric α-Alkylation of Aldehydes. Journal of the American Chemical Society, 2012, 134, 14991-14999.	6.6	410
2	Metal–Organic Framework Based upon the Synergy of a Brønsted Acid Framework and Lewis Acid Centers as a Highly Efficient Heterogeneous Catalyst for Fixed-Bed Reactions. Journal of the American Chemical Society, 2015, 137, 4243-4248.	6.6	242
3	An Amide-Containing Metal–Organic Tetrahedron Responding to a Spin-Trapping Reaction in a Fluorescent Enhancement Manner for Biological Imaging of NO in Living Cells. Journal of the American Chemical Society, 2011, 133, 12402-12405.	6.6	214
4	Multifunctional Luminescent Eu(III)-Based Metal–Organic Framework for Sensing Methanol and Detection and Adsorption of Fe(III) Ions in Aqueous Solution. Inorganic Chemistry, 2016, 55, 12660-12668.	1.9	209
5	Luminescent Metalâ€Organic Frameworks for Selectively Sensing Nitric Oxide in an Aqueous Solution and in Living Cells. Advanced Functional Materials, 2012, 22, 1698-1703.	7.8	198
6	Luminescent Sensing and Catalytic Performances of a Multifunctional Lanthanideâ€Organic Framework Comprising a Triphenylamine Moiety. Advanced Functional Materials, 2011, 21, 2788-2794.	7.8	163
7	Process-Tracing Study on the Postassembly Modification of Highly Stable Zirconium Metal–Organic Cages. Journal of the American Chemical Society, 2018, 140, 6231-6234.	6.6	159
8	Cadmium-Based Metal–Organic Framework as a Highly Selective and Sensitive Ratiometric Luminescent Sensor for Mercury(II). Inorganic Chemistry, 2015, 54, 11046-11048.	1.9	147
9	Structural and Catalytic Performance of a Polyoxometalate-Based Metalâ^Organic Framework Having a Lanthanide Nanocage as a Secondary Building Block. Inorganic Chemistry, 2010, 49, 1280-1282.	1.9	97
10	Carbon dioxide capture and efficient fixation in a dynamic porous coordination polymer. Nature Communications, 2019, 10, 4362.	5.8	91
11	An electron-donating strategy to guide the construction of MOF photocatalysts toward co-catalyst-free highly efficient photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2019, 7, 24180-24185.	5.2	90
12	A cadmium(<scp>ii</scp>)-based metal–organic framework for selective trace detection of nitroaniline isomers and photocatalytic degradation of methylene blue in neutral aqueous solution. Journal of Materials Chemistry A, 2016, 4, 16349-16355.	5.2	85
13	Dansyl-based fluorescent chemosensors for selective responses of Cr(<scp>iii</scp>). New Journal of Chemistry, 2009, 33, 653-658.	1.4	77
14	A Highly Chemically Stable Metal–Organic Framework as a Luminescent Probe for the Regenerable Ratiometric Sensing ofâ€pH. Chemistry - A European Journal, 2016, 22, 13023-13027.	1.7	71
15	Ceriumâ€Based M ₄ L ₄ Tetrahedra as Molecular Flasks for Selective Reaction Prompting and Luminescent Reaction Tracing. Chemistry - A European Journal, 2014, 20, 2224-2231.	1.7	69
16	Luminescent metal–organic frameworks as chemical sensors based on "mechanism–response― a review. Dalton Transactions, 2021, 50, 3429-3449.	1.6	68
17	A copper(ii) rhodamine complex with a tripodal ligand as a highly selective fluorescence imaging agent for nitric oxide. Chemical Communications, 2011, 47, 11507.	2.2	64
18	Hybrid MOF-808-Tb nanospheres for highly sensitive and selective detection of acetone vapor and Fe ³⁺ in aqueous solution. Chemical Communications, 2019, 55, 4727-4730.	2.2	61

#	Article	IF	Citations
19	Aldehyde-functionalized metal–organic frameworks for selective sensing of homocysteine over Cys, GSH and other natural amino acids. Chemical Communications, 2018, 54, 1004-1007.	2.2	55
20	A photoactive basket-like metal–organic tetragon worked as an enzymatic molecular flask for light driven H ₂ production. Chemical Communications, 2013, 49, 627-629.	2.2	52
21	Post-imparting BrÃ,nsted acidity into an amino-functionalized MOF as a bifunctional luminescent turn-ON sensor for the detection of aluminum ions and lysine. Dalton Transactions, 2019, 48, 13834-13840.	1.6	50
22	Coordination-driven nanosized lanthanide †Molecular Lanterns†as luminescent chemosensors for the selective sensing of magnesium ions. Dalton Transactions, 2014, 43, 335-343.	1.6	49
23	Post-modification of a MOF through a fluorescent-labeling technology for the selective sensing and adsorption of Ag+ in aqueous solution. Dalton Transactions, 2012, 41, 10153.	1.6	48
24	Photoactive Metal–Organic Framework and Its Film for Light-Driven Hydrogen Production and Carbon Dioxide Reduction. Inorganic Chemistry, 2016, 55, 8153-8159.	1.9	48
25	Highly efficient photocatalytic hydrogen production from pure water via a photoactive metal–organic framework and its PDMS@MOF. Journal of Materials Chemistry A, 2017, 5, 7833-7838.	5.2	46
26	Cobalt-containing covalent organic frameworks for visible light-driven hydrogen evolution. Science China Chemistry, 2020, 63, 192-197.	4.2	45
27	A europium(<scp>iii</scp>)-based metal–organic framework as a naked-eye and fast response luminescence sensor for acetone and ferric iron. New Journal of Chemistry, 2016, 40, 8600-8606.	1.4	42
28	A squaramide-based metal–organic framework as a luminescent sensor for the detection of lactose in aqueous solution and in milk. Chemical Communications, 2018, 54, 9131-9134.	2.2	40
29	Hydrazone-based covalent organic frameworks for Lewis acid catalysis. Dalton Transactions, 2018, 47, 13824-13829.	1.6	39
30	Fluorescent differentiation and quantificational detection of free tryptophan in serum within a confined metal–organic tetrahedron. Chemical Communications, 2012, 48, 11880.	2.2	38
31	A metal–organic framework with a 9-phenylcarbazole moiety as a fluorescent tag for picric acid explosive detection: collaboration of electron transfer, hydrogen bonding and size matching. RSC Advances, 2014, 4, 47357-47360.	1.7	36
32	Lanthanide-Based Metal–Organic Frameworks Containing "V-Shaped―Tetracarboxylate Ligands: Synthesis, Crystal Structures, "Naked-Eye―Luminescent Detection, and Catalytic Properties. Inorganic Chemistry, 2020, 59, 264-273.	1.9	36
33	Dimensional Impact of Metal–Organic Frameworks in Catalyzing Photoinduced Hydrogen Evolution and Cyanosilylation Reactions. ACS Applied Energy Materials, 2019, 2, 298-304.	2.5	35
34	Cobalt(II)-Based Metal–Organic Framework as Bifunctional Materials for Ag(I) Detection and Proton Reduction Catalysis for Hydrogen Production. Inorganic Chemistry, 2019, 58, 924-931.	1.9	33
35	Highly Efficient Visible-Light-Driven H ₂ Production via an Eosin Y-Based Metal–Organic Framework. Inorganic Chemistry, 2018, 57, 7495-7498.	1.9	32
36	Photoactive metal–organic framework as a bifunctional material for 4-hydroxy-4′-nitrobiphenyl detection and photodegradation of methylene blue. Dalton Transactions, 2018, 47, 16551-16557.	1.6	30

#	Article	IF	CITATIONS
37	Cluster nuclearity control and modulated hydrothermal synthesis of functionalized Zr ₁₂ metal–organic frameworks. Dalton Transactions, 2019, 48, 7069-7073.	1.6	29
38	Amide-containing luminescent metal–organic complexes as bifunctional materials for selective sensing of amino acids and reaction prompting. RSC Advances, 2016, 6, 27944-27951.	1.7	26
39	Luminescent Metal–Organic Frameworks for the Detection and Discrimination of <i>o</i> -Xylene from Xylene Isomers. Inorganic Chemistry, 2018, 57, 13631-13639.	1.9	25
40	A newly-constructed hydrolytically stable Co(<scp>ii</scp>) coordination polymer showing dual responsive fluorescence sensing of pH and Cu ²⁺ . CrystEngComm, 2021, 23, 4370-4381.	1.3	24
41	A bi-metallic MOF catalyst <i>via</i> sensitive detection & amp; adsorption of Fe ³⁺ ions for size-selective reaction prompting. Dalton Transactions, 2018, 47, 9267-9273.	1.6	19
42	Post-synthetic modification of a Tb-based metal–organic framework for highly selective and sensitive detection of metal ions in aqueous solution. New Journal of Chemistry, 2019, 43, 10232-10236.	1.4	13
43	Metal–organic frameworks containing xanthene dyes for photocatalytic applications. Dalton Transactions, 2020, 49, 17520-17526.	1.6	13
44	A novel dual-emitting luminescent metal-organic framework for naked-eye and microgram detection of picric acid. Dyes and Pigments, 2018, 150, 301-305.	2.0	11
45	Metal–Organic Cyclohelicates as Optical Receptors for Glutathione: Syntheses, Structures, and Host–Guest Behaviors. Chemistry - an Asian Journal, 2011, 6, 1225-1233.	1.7	9
46	Amino and triazole-containing metal–organic frameworks for highly efficient CO ₂ fixation. Chemical Communications, 2021, 57, 10803-10806.	2.2	9
47	A nanoporous metal–organic framework as a renewable size-selective hydrogen-bonding catalyst in water. Dalton Transactions, 2019, 48, 11855-11861.	1.6	8
48	A visible-light responsive metal–organic framework as an eco-friendly photocatalyst under ambient air at room temperature. Inorganic Chemistry Frontiers, 2020, 7, 3541-3547.	3.0	8
49	A Two-Fold Interpenetrated Dual-Emitting Luminescent Metal–Organic Framework as a Ratiometric Sensor for Chromium(III). Inorganic Chemistry, 2021, 60, 16803-16809.	1.9	8
50	A copper-based metal-organic framework for ratiometric detection of hydrogen sulfide with high sensitivity and fast response. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 243, 118794.	2.0	7
51	Synthesis of a bimetallic metal–organic framework catalyst <i>via</i> selective detection and adsorption of Fe ³⁺ for enhanced bio-based catalysis. Inorganic Chemistry Frontiers, 2021, 8, 4998-5005.	3.0	7
52	Two New Hybrid Architectures Based on Polyoxometaloborates and Imidazole Fragments. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 2016-2021.	0.6	6
53	DHPA-Containing Cobalt-Based Redox Metal-Organic Cyclohelicates as Enzymatic Molecular Flasks for Light-Driven H2 Production. Scientific Reports, 2017, 7, 14347.	1.6	6
54	Triphenylamine-containing imine-linked porous organic network for luminescent detection and adsorption of Cr(<scp>vi</scp>) in water. Dalton Transactions, 2022, 51, 10351-10356.	1.6	3

#	Article	lF	CITATIONS
55	Recent progress in fluorescent metal-organic frameworks for metal ion detection. Scientia Sinica Chimica, 2022, 52, 1005-1019.	0.2	2