Koichi Kajihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2529813/publications.pdf

Version: 2024-02-01

147566 197535 2,947 122 31 49 citations g-index h-index papers 124 124 124 2427 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Defects in oxide glasses. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 15-24.	0.8	222
2	Physical Disorder and Optical Properties in the Vacuum Ultraviolet Region of AmorphousSiO2. Physical Review Letters, 2001, 87, 175501.	2.9	141
3	Recent advances in sol–gel synthesis of monolithic silica and silica-based glasses. Journal of Asian Ceramic Societies, 2013, 1, 121-133.	1.0	123
4	Decomposition of water by a CaTiO3 photocatalyst under UV light irradiation. Materials Research Bulletin, 2002, 37, 2401-2406.	2.7	112
5	Preparation of Macroporous Titania Films by a Solâ€Gel Dipâ€Coating Method from the System Containing Poly(ethylene glycol). Journal of the American Ceramic Society, 1998, 81, 2670-2676.	1.9	107
6	Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass. Solid State Communications, 2002, 122, 117-120.	0.9	92
7	Electronic Structure of Oxygen Dangling Bond in GlassySiO2: The Role of Hyperconjugation. Physical Review Letters, 2003, 90, 186404.	2.9	76
8	Formation and decay of nonbridging oxygen hole centers in SiO2 glasses induced by F2 laser irradiation: In situ observation using a pump and probe technique. Applied Physics Letters, 2001, 79, 1757-1759.	1.5	74
9	Oxygen-excess-related point defects in glassy/amorphous SiO2 and related materials. Nuclear Instruments & Methods in Physics Research B, 2012, 286, 159-168.	0.6	65
10	Diffusion and reactions of interstitial oxygen species in amorphous SiO2: A review. Journal of Non-Crystalline Solids, 2008, 354, 224-232.	1.5	64
11	Diffusion and Reactions of Hydrogen inF2-Laser-IrradiatedSiO2Glass. Physical Review Letters, 2002, 89, 135507.	2.9	59
12	Oxygen ion conduction in 12CaO·7Al2O3: O2â~' conduction mechanism and possibility of Oâ~' fast conductionâ~†. Solid State Ionics, 2009, 180, 550-555.	1.3	57
13	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 17, 173-184.	1.1	55
14	Intrinsic defect formation in amorphousSiO2by electronic excitation: Bond dissociation versus Frenkel mechanisms. Physical Review B, 2008, 78, .	1.1	55
15	Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review B, 2011, 84, .	1.1	54
16	Vibrational Dynamics and Oxygen Diffusion in a Nanoporous Oxide Ion Conductor 12CaO·7Al ₂ O ₃ Studied by ¹⁸ O Labeling and Micro-Raman Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 14855-14861.	1.5	53
17	Interstitial oxygen molecules in amorphous SiO2. III. Measurements of dissolution kinetics, diffusion coefficient, and solubility by infrared photoluminescence. Journal of Applied Physics, 2005, 98, 013529.	1.1	51
18	Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping. Journal of Non-Crystalline Solids, 2004, 345-346, 328-331.	1.5	48

#	Article	IF	CITATIONS
19	Highly patterned cylindrical Ni–Sn alloys with 3-dimensionally ordered macroporous structure as anodes for lithium batteries. Electrochimica Acta, 2010, 55, 8030-8035.	2.6	45
20	Role of Mobile Interstitial Oxygen Atoms in Defect Processes in Oxides: Interconversion between Oxygen-Associated Defects inSiO2Glass. Physical Review Letters, 2004, 92, 015504.	2.9	44
21	Surface Dissolution and Diffusion of Oxygen Molecules in SiO2 Glass. Journal of the Ceramic Society of Japan, 2004, 112, 559-562.	1.3	44
22	Sol-gel synthesis of monolithic silica gels and glasses from phase-separating tetraethoxysilane–water binary system. Chemical Communications, 2009, , 2580.	2.2	44
23	Macroporous Morphology of the Titania Films Prepared by a Sol-Gel Dip-Coating Method from the System Containing Poly(Ethylene Glycol). I. Effect of Humidity. Journal of Sol-Gel Science and Technology, 1998, 12, 185-192.	1.1	42
24	UV–VUV laser induced phenomena in SiO2 glass. Nuclear Instruments & Methods in Physics Research B, 2004, 218, 323-331.	0.6	38
25	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 19, 219-222.	1.1	36
26	Power dependence of defect formation in SiO2 glass by F2 laser irradiation. Applied Physics Letters, 2002, 81, 3164-3166.	1.5	36
27	Interstitial oxygen molecules in amorphous SiO2. I. Quantitative concentration analysis by thermal desorption, infrared photoluminescence, and vacuum-ultraviolet optical absorption. Journal of Applied Physics, 2005, 98, 013527.	1.1	36
28	An increased F2-laser damage in â€wet' silica glass due to atomic hydrogen: A new hydrogen-related E′-center. Journal of Non-Crystalline Solids, 2006, 352, 2297-2302.	1.5	36
29	Photovoltaic Effect in Titanium Dioxide/Zinc Phthalocyanine Cell. Japanese Journal of Applied Physics, 1996, 35, 6110-6116.	0.8	35
30	Macroporous Morphology of the Titania Films Prepared by a Sol-Gel Dip-Coating Method from the System Containing Poly(Ethylene Glycol). II. Effect of Solution Composition. Journal of Sol-Gel Science and Technology, 1998, 12, 193-201.	1.1	33
31	In situobservation of the formation, diffusion, and reactions of hydrogenous species inF2-laser-irradiatedSiO2glass using a pump-and-probe technique. Physical Review B, 2006, 74, .	1.1	31
32	Photovoltaic Effect in Titanium Dioxide/Polythiophene Cell. Japanese Journal of Applied Physics, 1997, 36, 5537-5542.	0.8	30
33	Photoluminescence from Epitaxial Films of Perovskite-type Alkaline-earth Stannates. Applied Physics Express, 2008, 1, 015003.	1.1	29
34	Effects of H2 impregnation on excimer-laser-induced oxygen-deficient center formation in synthetic SiO2 glass. Applied Physics Letters, 2002, 80, 3916-3918.	1.5	28
35	Macroscopic Phase Separation in a Tetraethoxysilane–Water Binary Sol–Gel System. Bulletin of the Chemical Society of Japan, 2009, 82, 1470-1476.	2.0	27
36	Macroporous morphology of titania films prepared by sol-gel dip-coating method from a system containing poly(ethylene glycol) and poly(vinylpyrrolidone). Journal of Materials Research, 2001, 16, 58-66.	1.2	26

3

#	Article	lF	CITATIONS
37	The behavior of interstitial oxygen atoms induced by F2 laser irradiation of oxygen-rich glassy SiO2. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 127-130.	0.6	26
38	Title is missing!. Journal of Sol-Gel Science and Technology, 1999, 16, 257-266.	1.1	25
39	Interaction of F2 excimer laser pulses with hydroxy groups in SiO2 glass: Hydrogen bond formation and bleaching of vacuum ultraviolet absorption edge. Journal of Chemical Physics, 2001, 115, 9473-9476.	1.2	24
40	Computational investigation of the Mg-ion conductivity and phase stability of MgZr ₄ (PO ₄) ₆ . RSC Advances, 2019, 9, 12590-12595.	1.7	24
41	Vacuum-ultraviolet absorption of hydrogenated and deuterated silanol groups and interstitial water molecules in amorphousSiO2. Physical Review B, 2005, 72, .	1.1	23
42	Interstitial oxygen molecules in amorphous SiO2. II. The influence of common dopants (SiOH, SiF, and) Tj ETQq0 Physics, 2005, 98, 013528.	0 0 rgBT 1.1	Overlock 10 21
43	Evaluation of Electrochemical Characteristics of Li ₇ La ₃ Zr ₂ O ₁₂ Solid Electrolyte. ECS Transactions, 2009, 16, 175-180.	0.3	21
44	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 17, 239-245.	1.1	19
45	Improvement of Vacuum-Ultraviolet Transparency of Silica Glass by Modification of Point Defects(Review). Journal of the Ceramic Society of Japan, 2007, 115, 85-91.	1.3	19
46	Deep-ultraviolet transparent monolithic sol–gel derived silica–REPO ₄ (RE = Y, La–Lu) Tj ETQc and application to narrow-band UVB phosphors. Journal of Materials Chemistry C, 2015, 3, 9894-9901.	0 0 0 rgB 2.7	T /Overlock 10 19
47	Luminescence and Raman Detection of Molecular Cl2 and ClClO Molecules in Amorphous SiO2 Matrix. Journal of Physical Chemistry C, 2017, 121, 5261-5266.	1.5	19
48	Spontaneous oxygen loading into SiO2 glass by thermal anneal. Journal of Non-Crystalline Solids, 2004, 349, 205-208.	1.5	18
49	<title>Second harmonic generation in electrically poled TeO<formula><inf><roman>2</roman></inf></formula>-based glasses</title> ., 1994, 2289, 167.		16
50	Photochemistry in phosphorus-doped silica glass by ArF excimer laser irradiation: Crucial effect of H2 loading. Journal of Applied Physics, 2002, 91, 4121-4124.	1.1	16
51	Reactions of SiCl groups in amorphous SiO2 with mobile interstitial chemical species: Formation of interstitial Cl2 and HCl molecules, and role of interstitial H2O molecules. Journal of Applied Physics, 2005, 98, 043515.	1.1	16
52	Amine-buffered Phase Separating Tetraethoxysilane–Water Binary Mixture: A Simple Precursor of Sol–Gel Derived Monolithic Silica Gels and Glasses. Chemistry Letters, 2010, 39, 712-713.	0.7	16
53	Sol–Gel Synthesis of Rare-Earth and Phosphorus Codoped Monolithic Silica Glasses from a Cosolvent-Free Phase-Separating System. Applied Physics Express, 2012, 5, 012601.	1.1	16
54	Effect of F2 laser power on defect formation in high-purity SiO2 glass. Journal of Non-Crystalline Solids, 2003, 322, 73-77.	1.5	15

#	Article	IF	CITATIONS
55	Fluorine laser-induced silicon hydride Si–H groups in silica. Journal of Non-Crystalline Solids, 2007, 353, 526-529.	1.5	15
56	-ray-induced intrinsic defect processes in fluorine-doped synthetic SiO2 glasses of different fluorine concentrations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 161, 96-99.	1.7	15
57	Indium-Based Ultraviolet-Transparent Electroconductive Oxyfluoride InOF: Ambient-Pressure Synthesis and Unique Electronic Properties in Comparison with In ₂ O ₃ . Journal of the American Chemical Society, 2013, 135, 13080-13088.	6.6	15
58	Correlation between oxygen-deficient center formation and volume compaction in synthetic SiO_2 glass upon ArF or F_2 excimer-laser irradiation. Applied Optics, 2004, 43, 2332.	2.1	14
59	Hydrogen-related radiation defects in SiO2-based glasses. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 2971-2975.	0.6	14
60	Oxygen Exchange at the Internal Surface of Amorphous <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SiO</mml:mi><mml:mn></mml:mn></mml:msub></mml:math> Studied by Photoluminescence of Isotopically Labeled Oxygen Molecules. Physical Review Letters, 2009, 102, 175502.	2.9	14
61	Phenylphosphonate surface functionalisation of MgMn ₂ O ₄ with 3D open-channel nanostructures for composite slurry-coated cathodes of rechargeable magnesium batteries operated at room temperature. RSC Advances, 2021, 11, 19076-19082.	1.7	14
62	Modification of vacuum-ultraviolet absorption of SiOH groups in SiO2 glass with temperature, F2 laser irradiation, and H–D isotope exchange. Journal of Non-Crystalline Solids, 2006, 352, 2307-2310.	1.5	13
63	Diffusion of nitrogen molecules in amorphous SiO2. Applied Physics Letters, 2007, 91, .	1.5	13
64	Luminescence of non-bridging oxygen hole centers as a marker of particle irradiation of \hat{l} ±-quartz. Radiation Measurements, 2020, 135, 106373.	0.7	13
65	Diffusion and Reactions of Photoinduced Interstitial Oxygen Atoms in Amorphous SiO ₂ Impregnated with ¹⁸ O-Labeled Interstitial Oxygen Molecules. Journal of Physical Chemistry C, 2014, 118, 4282-4286.	1.5	12
66	Oxygen detection in sol–gel derived titania thin films doped with tantalum. Physical Chemistry Chemical Physics, 1999, 1, 1979-1983.	1.3	11
67	Role of Interstitial Voids in Oxides on Formation and Stabilization of Reactive Radicals:Â Interstitial HO2Radicals in F2-Laser-Irradiated Amorphous SiO2. Journal of the American Chemical Society, 2006, 128, 5371-5374.	6.6	11
68	Sol-gel synthesis of fluorine-doped silica glasses with low SiOH concentrations. Journal of the Ceramic Society of Japan, 2011, 119, 393-396.	0.5	11
69	Synthesis and characterization of lithium-ion-conductive glass-ceramics of lithium chloroboracite Li ₄₊ <i>_x</i> B ₇ O _{12+(<i>x</i> = 0–1). Journal of the Ceramic Society of Japan, 2017, 125, 348-352.}	& lt; \$sub&g	gtj<i> _i 8
70	Creation of glass-characteristic point defects in crystalline SiO2 by 2.5†MeV electrons and by fast neutrons. Journal of Non-Crystalline Solids, 2019, 505, 252-259.	1.5	11
71	Cosolvent-free sol–gel synthesis of rare-earth and aluminum codoped monolithic silica glasses. Journal of the Ceramic Society of Japan, 2013, 121, 299-302.	0.5	10
72	Highly transparent, bright green, sol–gel-derived monolithic silica-(Tb,Ce)PO4 glass-ceramic phosphors. RSC Advances, 2014, 4, 26692-26696.	1.7	10

#	Article	IF	CITATIONS
73	Li4B4 <i>M</i> 3012Cl (<i>M</i> = Al, Ga): An Electrochemically Stable, Lithium-Ion-Conducting Cubic Boracite with Substituted Boron Sites. Bulletin of the Chemical Society of Japan, 2017, 90, 1279-1286.	2.0	10
74	Interconversion between non-bridging oxygen hole center and peroxy radical in F2-laser-irradiated SiO2 glass. Journal of Non-Crystalline Solids, 2004, 345-346, 219-223.	1.5	9
75	Isotope Effect on the Infrared Photoluminescence Decay of Interstitial Oxygen Molecules in Amorphous SiO2. Applied Physics Express, 2009, 2, 056502.	1.1	9
76	Synthesis of nanocrystalline LaF3 doped silica glasses by hydrofluoric acid catalyzed sol–gel process. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 510-514.	1.7	9
77	Hydrothermal Synthesis of Manganese Dioxide Nanoparticles as Cathode Material for Rechargeable Batteries. Electrochemistry, 2013, 81, 2-6.	0.6	9
78	Formation of Intrinsic Point Defects in Fluorine-doped Synthetic SiO2Glass by60Co Î ³ -ray Irradiation. Chemistry Letters, 2007, 36, 266-267.	0.7	8
79	Reactivity of SiCl and SiF groups in SiO2 glass with mobile interstitial O2 and H2O molecules. Journal of Non-Crystalline Solids, 2007, 353, 514-517.	1.5	8
80	Exchange between interstitial oxygen molecules and network oxygen atoms in amorphousSiO2studied byO18isotope labeling and infrared photoluminescence spectroscopy. Physical Review B, 2011, 83, .	1.1	8
81	Characteristic Coordination Structure around Nd Ions in Sol–Gel-Derived Nd–Al-Codoped Silica Glasses. Journal of Physical Chemistry B, 2014, 118, 8792-8797.	1.2	8
82	Synthesis of silanol-rich long-life polysilsesquioxane liquids by cosolvent-free hydrolytic polycondensation of organotrimethoxysilanes followed by aging. Dalton Transactions, 2016, 45, 3151-3157.	1.6	8
83	High-Temperature Conductivity Measurements of Magnesium-Ion-Conducting Solid Oxide Mg _{0.5â^^} <i>_x</i> (Zr _{1â^^} <i>_x</i> Nb <i>_x</i>) <s< td=""><td>sub 12x/sub</td><td>)>(80₄</td></s<>	sub 1 2 x/sub)>(8 0 ₄
84	<title>Advances in silica-based glasses for UV and vacuum UV laser optics</title> ., 2003, 5122, 1.		7
85	Fabrication of Three-Dimensional Battery Using Ceramic Electrolyte with Honeycomb Structure by Sol-gel Process. ECS Transactions, 2009, 16, 37-43.	0.3	7
86	Diffusion of oxygen molecules in fluorine-doped amorphous SiO2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 173, 158-161.	1.7	7
87	Synthesis of monolithic deep-ultraviolet-transparent polysilsesquioxane glasses from organotrimethoxysilane–water binary system. RSC Advances, 2012, 2, 8946.	1.7	7
88	Thiol-Containing Polysilsesquioxane Liquid and Photocurable Sulfur-Containing Transparent Organic–Inorganic Hybrid Monoliths Obtained via Cosolvent-Free Hydrolytic Polycondensation. Bulletin of the Chemical Society of Japan, 2013, 86, 880-883.	2.0	7
89	Luminescence of non-bridging oxygen hole centers in crystalline SiO2. AIP Conference Proceedings, 2014, , .	0.3	7
90	Vacuum-ultraviolet absorption of interstitial O2 and H2O molecules in SiO2 glass. Journal of Non-Crystalline Solids, 2006, 352, 2303-2306.	1.5	6

#	Article	IF	CITATIONS
91	Sol–gel-derived transparent silica–(Gd,Pr)PO ₄ glass-ceramic narrow-band UVB phosphors. Dalton Transactions, 2018, 47, 12085-12091.	1.6	6
92	Negligible concentration quenching in photoluminescent nanocrystals with high photoactive rare-earth concentrations: silica–(Tb,Ce)PO ₄ transparent glass-ceramic green phosphors. Journal of Materials Chemistry C, 2021, 9, 2701-2705.	2.7	6
93	Solid-State Rechargeable Lithium Metal Battery with Li ₄ B ₄ Al ₃ O ₁₂ Cl-based Water-Resistant Lithium-lon-Conducting Oxychloride Glass-Ceramic Electrolyte. Journal of the Electrochemical Society. 2021, 168, 040524.	1.3	6
94	Formation and annihilation of intrinsic defects induced by electronic excitation in high-purity crystalline SiO2. Journal of Applied Physics, 2013, 113, 143511.	1.1	5
95	Cosolvent-Free Sol–Gel Synthesis and Optical Characterization of Silica Glasses Containing LaF3 and (La,Er)F3 Nanocrystals. Bulletin of the Chemical Society of Japan, 2014, 87, 765-772.	2.0	5
96	Poly(n-alkylsilsesquioxane) liquids prepared by cosolvent-free hydrolytic polycondensation of n-alkyltrialkoxysilanes: effects of liquid–liquid phase separation during aging and alkyl chain length on structure and viscosity. Dalton Transactions, 2016, 45, 15532-15540.	1.6	5
97	Interstitial OH Radicals in F2-Laser-Irradiated Bulk Amorphous SiO2. Journal of Physical Chemistry B, 2006, 110, 10224-10227.	1.2	4
98	Crucial dependence of excimer laser toughness of $\hat{a} \in \text{constant}$ on excess oxygen. Journal of Non-Crystalline Solids, 2011, 357, 1875-1878.	1.5	4
99	Temperature dependence of O2 singlet photoluminescence in silica nanoparticles. Journal of Non-Crystalline Solids, 2013, 379, 220-223.	1.5	4
100	Structure, Microscopic Ordering, and Viscous Properties of Amorphous Poly(nâ€alkylsilsesquioxane) Liquids and Solids Synthesized by Cosolventâ€Free Hydrolytic Polycondensation ofnâ€Alkyltrimethoxysilanes. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800475.	0.8	4
101	Frenkel defect process in amorphous silica. , 2011, , .		3
102	Oxygen-excess amorphous SiO2 with 18O-labeled interstitial oxygen molecules. Journal of Non-Crystalline Solids, 2011, 357, 1842-1845.	1.5	3
103	Seed-free hydrothermal synthesis of all-silica deca-dodecasil 3R with essential reagents. Journal of the Ceramic Society of Japan, 2018, 126, 221-229.	0.5	3
104	Cosolvent-free sol–gel dip-coating of silica films from tetraalkoxysilane–water binary systems: precursor solutions of long pot life and their characterization by nuclear magnetic resonance spectroscopy. Journal of the Ceramic Society of Japan, 2020, 128, 772-782.	0.5	3
105	Decomposition of peroxy radicals in SiO2 glass with X-rays or KrF laser light. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 314-317.	0.8	2
106	Effects of temperature on electron paramagnetic resonance of dangling oxygen bonds in amorphous silicon dioxide. IOP Conference Series: Materials Science and Engineering, 2011, 23, 012016.	0.3	2
107	Inhomogeneous broadening and peak shift of the 7.6 eV optical absorption band of oxygen vacancies in SiO2. , 2014, , .		2
108	Cosolvent-free synthesis and characterisation of poly(phenyl- <i>co-n</i> -alkylsilsesquioxane) and poly(phenyl- <i>co</i> -vinylsilsesquioxane) glasses with low melting temperatures. Dalton Transactions, 2020, 49, 2487-2495.	1.6	2

#	Article	IF	CITATIONS
109	Energy transfer and quenching in sol–gelâ€derived silica glass green phosphors doped with Tb 3+ and Ce 3+ ions: distinct difference between Al―and Pâ€codoped glasses. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100494.	0.8	2
110	Cosolvent-free synthesis of macroporous silica gels and monolithic silica glasses from tetraalkoxysilane–water binary systems: comparison between tetramethoxysilane and tetraethoxysilane. Journal of Sol-Gel Science and Technology, 2022, 104, 497-502.	1.1	2
111	Optical Second-order Nonlinearity and Glass Structure of Poled Tellurite Glasses Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 1995, 42, 55-60.	0.1	1
112	Publisher's Note: Diffusion and Reactions of Hydrogen inF2-Laser-IrradiatedSiO2Glass [Phys. Rev. Lett.89, 135507 (2002)]. Physical Review Letters, 2002, 89, .	2.9	1
113	Luminescence properties of chlorine molecules in glassy SiO2 and optical fibre waveguides. Proceedings of the Estonian Academy of Sciences, 2017, 66, 455.	0.9	1
114	Optical Absorption of Excimer Laserâ€Induced Dichlorine Monoxide in Silica Glass and Excitation of Singlet Oxygen Luminescence by Energy Transfer from Chlorine Molecules. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100009.	0.8	1
115	Optical transparency of SiO 2 glass in vacuum ultraviolet region and defect formation by F 2 laser. , 2001, 4347, 223.		0
116	Photoluminescence Study of Diffusion and Reactions of ¹⁸ O-labeled Interstitial Oxygen Molecules in Amorphous SiO ₂ . ECS Transactions, 2009, 25, 277-285.	0.3	0
117	18O-labeled interstitial oxygen molecules as probes to study reactions involving oxygen-related species in amorphous SiO2. Journal of Non-Crystalline Solids, 2012, 358, 3524-3530.	1.5	0
118	Twinning by Merohedry and Thermal Expansion of Zeolitic Clathrasil Deca-dodecasil 3R. Inorganic Chemistry, 2020, 59, 5600-5609.	1.9	0
119	Lithium Chloroboracite Li4B4M3O12Cl (MÂ=ÂAl, Ga): Glass-Ceramic Synthesis and Application to Solid-State Rechargeable Lithium Batteries. , 2021, , 231-238.		0
120	High-Temperature Conductivity Measurements of Magnesium-Ion-Conducting Solid Oxide Using Mg Metal Electrodes., 2021,, 521-524.		0
121	Low-Refractive-Index Deep-Ultraviolet Transparent Poly(fluoroalkyl-co-methylsilsesquioxane) Resins Synthesized by Cosolvent-Free Hydrolytic Polycondensation of Organotrimethoxysilanes. Journal of Physical Chemistry B, 2021, 125, 8238-8242.	1.2	0
122	Energy Transfer and Quenching in Sol–Gelâ€Derived Silica Glass Green Phosphors Doped with Tb ³⁺ and Ce ³⁺ lons: Distinct Difference between P―and Alâ€Codoped Glasses. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	0