Gloria SoberÃ³n-ChÃ_ivez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2529812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Applied Microbiology and Biotechnology, 2000, 54, 625-633.	3.6	488
2	Production of rhamnolipids by Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2005, 68, 718-725.	3.6	380
3	Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Molecular Microbiology, 2001, 40, 708-718.	2.5	237
4	Mechanism of Pseudomonas aeruginosa RhlR Transcriptional Regulation of the rhlAB Promoter. Journal of Bacteriology, 2003, 185, 5976-5983.	2.2	136
5	Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology (United Kingdom), 2003, 149, 3073-3081.	1.8	118
6	Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Applied Microbiology and Biotechnology, 2006, 73, 187-194.	3.6	100
7	Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. Journal of Bacteriology, 1996, 178, 1800-1808.	2.2	95
8	Characterization of the gene coding for GDP-mannose dehydrogenase (algD) from Azotobacter vinelandii. Journal of Bacteriology, 1996, 178, 1793-1799.	2.2	88
9	Rhamnolipids: Production in bacteria other than <i>Pseudomonas aeruginosa</i> . European Journal of Lipid Science and Technology, 2010, 112, 1082-1087.	1.5	85
10	Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics, 2014, 15, 318.	2.8	85
11	The third quorum-sensing system of Pseudomonas aeruginosa: Pseudomonas quinolone signal and the enigmatic PqsE protein. Journal of Medical Microbiology, 2020, 69, 25-34.	1.8	79
12	Regulation of <i>Pseudomonas aeruginosa</i> virulence factors by two novel RNA thermometers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15562-15567.	7.1	77
13	Genetic rearrangements of a Rhizobium phaseoli symbiotic plasmid. Journal of Bacteriology, 1986, 167, 487-491.	2.2	71
14	Rhamnolipids produced by <i>Pseudomonas</i> : from molecular genetics to the market. Microbial Biotechnology, 2021, 14, 136-146.	4.2	61
15	Biosurfactants: A General Overview. Microbiology Monographs, 2011, , 1-11.	0.6	58
16	High variability in quorum quenching and growth inhibition by furanone C-30 in <i>Pseudomonas aeruginosa</i> clinical isolates from cystic fibrosis patients. Pathogens and Disease, 2015, 73, ftv040.	2.0	57
17	The Pseudomonas aeruginosa rhIAB Operon Is Not Expressed during the Logarithmic Phase of Growth Even in the Presence of Its Activator RhIR and the Autoinducer N -Butyryl-Homoserine Lactone. Journal of Bacteriology, 2003, 185, 377-380.	2.2	55
18	Genetic analysis of the transcriptional arrangement of Azotobacter vinelandii alginate biosynthetic genes: identification of two independent promoters. Molecular Microbiology, 1996, 21, 449-457.	2.5	54

#	Article		IF	CITATIONS
19	The Pseudomonas aeruginosa RhlA enzyme is involved in rhamnolipid and polyhydroxyalkanoate production. Journal of Industrial Microbiology and Biotechnology, 2005, 32, 675-677.		3.0	52
20	Transcriptional regulation of Pseudomonas aeruginosa rhlR: role of the CRP orthologue Vfr (virulence factor regulator) and quorum-sensing regulators LasR and RhlR. Microbiology (United) Tj	ETQq0 0 0 rg	BT1/Overlo	აcხ 1 0 Tf 50 6
21	Isolation from soil of Rhizobium leguminosarum lacking symbiotic information. Canadian Journal of Microbiology, 1989, 35, 464-468.		1.7	48
22	Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production. Applied Microbiology and Biotechnology, 2016, 100, 9995-10004.		3.6	47
23	The Pseudomonas aeruginosa rmlBDAC operon, encoding dTDP-l-rhamnose biosynthetic enzymes, is regulated by the quorum-sensing transcriptional regulator RhlR and the alternative sigma factor ÏfS. Microbiology (United Kingdom), 2012, 158, 908-916.		1.8	46
24	Role of <i>Azotobacter vinelandii mucA</i> and <i>mucC</i> Gene Products in Alginate Production. Journal of Bacteriology, 2000, 182, 6550-6556.		2.2	43
25	The Azotobacter vinelandii alg8 and alg44 genes are essential for alginate synthesis and can be transcribed from an algD-independent promoter. Gene, 1997, 199, 271-277.		2.2	41
26	IsPseudomonas aeruginosaOnly "Sensing Quorum�. Critical Reviews in Microbiology, 2005, 3	l, 171-182.	6.1	35
27	Inactivation of the quorum-sensing transcriptional regulators LasR or RhlR does not suppress the expression of virulence factors and the virulence of Pseudomonas aeruginosa PAO1. Microbiology (United Kingdom), 2019, 165, 425-432.		1.8	35
28	Pseudomonas Lipases: Molecular Genetics and Potential Industrial Applications. Critical Reviews in Microbiology, 1994, 20, 95-105.		6.1	34
29	The Transcriptional Regulators of the CRP Family Regulate Different Essential Bacterial Functions an Can Be Inherited Vertically and Horizontally. Frontiers in Microbiology, 2017, 8, 959.	d	3.5	32
30	The Rhl Quorum-Sensing System Is at the Top of the Regulatory Hierarchy under Phosphate-Limiting Conditions in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 2021, 203, .		2.2	32

31	Twoâ€role model of an interaction network of freeâ€living γâ€proteobacteria from an oligotrophic environment. Environmental Microbiology, 2014, 16, 1366-1377.	3.8	31
32	Selection and partial characterization of a Pseudomonas aeruginosa mono-rhamnolipid deficient mutant. FEMS Microbiology Letters, 2006, 153, 279-285.	1.8	30
33	Exploiting Quorum Sensing Inhibition for the Control of Pseudomonas aeruginosa and Acinetobacter baumannii Biofilms. Current Topics in Medicinal Chemistry, 2017, 17, 1915-1927.	2.1	30
34	Characterization of the gene involved in alginate and lipopolysaccharide production. FEMS Microbiology Letters, 2004, 238, 199-206.	1.8	29
35	Characterization of theAzotobacter vinelandii algCgene involved in alginate and lipopolysaccharide production. FEMS Microbiology Letters, 2004, 238, 199-206.	1.8	27
36	Characterization of a novel biosurfactant producing Pseudomonas koreensis lineage that is endemic	2.8	26

to Cuatro Ciénegas Basin. Systematic and Applied Microbiology, 2011, 34, 531-535. 36

#	Article	IF	CITATIONS
37	Pseudomonas aeruginosa quorum-sensing response in the absence of functional LasR and LasI proteins: the case of strain 148, a virulent dolphin isolate. FEMS Microbiology Letters, 2017, 364, .	1.8	26
38	Variability of Bacterial Essential Genes Among Closely Related Bacteria: The Case of Escherichia coli. Frontiers in Microbiology, 2018, 9, 1059.	3.5	26
39	RNA structures are involved in the thermoregulation of bacterial virulence-associated traits. Trends in Microbiology, 2015, 23, 509-518.	7.7	25
40	Isolation and characterization of an Azotobacter vinelandii algK mutant. FEMS Microbiology Letters, 2006, 156, 101-106.	1.8	24
41	Expression of Cholera Toxin under Non-AKI Conditions in Vibrio cholerae El Tor Induced by Increasing the Exposed Surface of Cultures. Journal of Bacteriology, 2004, 186, 1355-1361.	2.2	22
42	Strong seed-bank effects in bacterial evolution. Journal of Theoretical Biology, 2014, 356, 62-70.	1.7	21
43	Genetic and Phenotypic Characterization of a Pseudomonas aeruginosa Population with High Frequency of Genomic Islands. PLoS ONE, 2012, 7, e37459.	2.5	20
44	Overproduction of rhamnolipids in Pseudomonas aeruginosa PA14 by redirection of the carbon flux from polyhydroxyalkanoate synthesis and overexpression of the rhlAB-R operon. Biotechnology Letters, 2018, 40, 1561-1566.	2.2	20
45	Inactivation of the ampDE Operon Increases Transcription of algD and Affects Morphology and Encystment of Azotobacter vinelandii. Journal of Bacteriology, 2000, 182, 4829-4835.	2.2	19
46	Role of β-oxidation and de novo fatty acid synthesis in the production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2019, 103, 3753-3760.	3.6	18
47	Complete Genome Sequence of Serratia marcescens SmUNAM836, a Nonpigmented Multidrug-Resistant Strain Isolated from a Mexican Patient with Obstructive Pulmonary Disease. Genome Announcements, 2016, 4, .	0.8	17
48	Rhamnolipids stabilize quorum sensing mediated cooperation in <i>Pseudomonas aeruginosa</i> . FEMS Microbiology Letters, 2020, 367, .	1.8	17
49	Genetic stability and xanthan gum production in Xanthomonas campestris pv. campestris NRRL B1459. Molecular Microbiology, 1993, 8, 1053-1061.	2.5	15
50	Biochemical characterization of the lipolytic activity of pseudomonas aeruginosa IGB 83. Process Biochemistry, 1994, 29, 207-212.	3.7	15
51	ThePseudomonas aeruginosa motRgene involved in regulation of bacterial motility. FEMS Microbiology Letters, 2000, 184, 57-62.	1.8	15
52	Characterization of the lipA gene encoding the major lipase from Pseudomonas aeruginosa strain IGB83. Applied Microbiology and Biotechnology, 2001, 56, 731-735.	3.6	15
53	PqsRâ€independent quorumâ€sensing response of <i>Pseudomonas aeruginosa</i> ATCC 9027 outlierâ€strain reveals new insights on the PqsE effect on RhIR activity. Molecular Microbiology, 2021, 116, 1113-1123.	2.5	15
54	The effect of specific <i>rhlA-</i> las-box mutations on DNA binding and gene activation by <i>Pseudomonas aeruginosa</i> quorum-sensing transcriptional regulators RhlR and LasR. FEMS Microbiology Letters, 2014, 356, 217-225.	1.8	12

#	Article	IF	CITATIONS
55	The outlier Pseudomonas aeruginosa strain ATCC 9027 harbors a defective LasR quorum-sensing transcriptional regulator. FEMS Microbiology Letters, 2020, 367, .	1.8	12
56	Virulence factors regulation by the quorum-sensing and Rsm systems in the marine strain <i>Pseudomonas aeruginosa</i> ID4365, a natural mutant in <i>lasR</i> . FEMS Microbiology Letters, 2020, 367, .	1.8	12
57	Selection and preliminary characterization of a Pseudomonas aeruginosa strain mineralizing selected isomers in a branchedchain dodecylbenzenesulphonate mixture. World Journal of Microbiology and Biotechnology, 1996, 12, 367-372.	3.6	10
58	TwoPseudomonas aeruginosaclonal groups belonging to the PA14 clade are indigenous to the Churince system in Cuatro Ciénegas Coahuila, México. Environmental Microbiology, 2019, 21, 2964-2976.	3.8	10
59	Biosynthesis of Rhamnolipids. , 2004, , 173-189.		9
60	Theoretical analysis of the cost of antagonistic activity for aquatic bacteria in oligotrophic environments. Frontiers in Microbiology, 2015, 6, 490.	3.5	9
61	The Pseudomonas aeruginosa hscA gene encodes Hsc66, a DnaK homologue The GenBank accession number for the sequence of the W51D chromosomal region including the hscB, hscA and fdxA genes is AF096864 Microbiology (United Kingdom), 2000, 146, 1429-1435.	1.8	9
62	Tracking the genome of four Pseudomonas aeruginosa isolates that have a defective Las quorum-sensing system, but are still virulent. Access Microbiology, 2020, 2, acmi000132.	0.5	9
63	Evaluation of the Role of RecA Protein in Plant Virulence with recA Mutants of Xanthomonas campestris pv. campestris. Molecular Plant-Microbe Interactions, 1997, 10, 911-916.	2.6	8
64	Evaluation of the biological containment system based on the Escherichia coli gef gene in Pseudomonas aeruginosa W51D. Applied Microbiology and Biotechnology, 1996, 46, 549-553.	3.6	7
65	Xanthomonas campestris as a host for the production of recombinantPseudomonas aeruginosa lipase. Journal of Industrial Microbiology, 1996, 16, 22-28.	0.9	7
66	Formation ofRhizobium phaseolisymbiotic plasmids by genetic recombination. Molecular Microbiology, 1991, 5, 909-916.	2.5	6
67	A Novel Two-Component System, Encoded by the sco5282/sco5283 Genes, Affects Streptomyces coelicolor Morphology in Liquid Culture. Frontiers in Microbiology, 2019, 10, 1568.	3.5	6
68	Evolution of bacteria seen through their essential genes: the case of Pseudomonas aeruginosa and Azotobacter vinelandii. Microbiology (United Kingdom), 2019, 165, 976-984.	1.8	6
69	Title is missing!. Biotechnology Letters, 2000, 22, 235-237.	2.2	5
70	Complete Genome Sequences of Four Extensively Drug-Resistant Pseudomonas aeruginosa Strains, Isolated from Adults with Ventilator-Associated Pneumonia at a Tertiary Referral Hospital in Mexico City. Genome Announcements, 2017, 5, .	0.8	5
71	Editorial: Biosurfactants: New Insights in Their Biosynthesis, Production and Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 769899.	4.1	5
72	LipoproteinN-acyl transferase (Lnt1) is dispensable for proteinO-mannosylation byStreptomyces coelicolor. FEMS Microbiology Letters, 2014, 350, 72-82.	1.8	4

#	ARTICLE	IF	CITATIONS
73	Complete Genome Sequences of Two Pseudomonas aeruginosa Strains Isolated from Children with Bacteremia. Genome Announcements, 2017, 5, .	0.8	4
74	Vfr or CyaB promote the expression of the pore-forming toxin exlBA operon in Pseudomonas aeruginosa ATCC 9027 without increasing its virulence in mice. Microbiology (United Kingdom), 2021, 167, .	1.8	4
75	The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiology Letters, 1999, 179, 85-90.	1.8	3
76	Overview on Glycosylated Lipids Produced by Bacteria and Fungi: Rhamno-, Sophoro-, Mannosylerythritol and Cellobiose Lipids. Advances in Biochemical Engineering/Biotechnology, 2022, , 73-122.	1.1	3
77	Tracking the Origins of Pseudomonas aeruginosa Phylogroups by Diversity and Evolutionary Analysis of Important Pathogenic Marker Genes. Diversity, 2022, 14, 345.	1.7	3
78	Partial deletion of theRhizobium phaseoliCFN23 symbiotic plasmid implies a concomitant amplification of plasmid DNA sequences. Molecular Microbiology, 1991, 5, 89-95.	2.5	2
79	Cloning and characterization of a FAD-monooxygenase gene (cadA) involved in degradation of chloranilic acid (2,5-dichloro-3,6-dihydroxybenzo-1,4-quinone) in Pseudomonas putida TQ07. Applied Microbiology and Biotechnology, 2002, 59, 545-550.	3.6	2
80	Presencia de genes rhlAB, rhlR y rhlC en Pseudomonas aeruginosa nativas sobreproductoras de ramnolÃpidos. Revista Peruana De Biologia, 2017, 24, 293.	0.3	0
81	The Escherichia coli bcsB gene is a conditional essential gene in the context of functional cellulose synthesis. FEMS Microbiology Letters, 2018, 365, .	1.8	Ο
82	The Evolution of Bacteria Can Produce Chimeric Creatures: The Case of Azotobacter vinelandii. Frontiers for Young Minds, 2019, 7, .	0.8	0