Evaluat Spe Of Cansort Sign a fi Tese Broste

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2529629/publications.pdf

Version: 2024-02-01

Uci Nci Specs Consortium Of The Strategic Partners

#	Article	IF	CITATIONS
1	Transcriptome Analysis of Ovarian and Uterine Clear Cell Malignancies. Frontiers in Oncology, 2020, 10, 598579.	2.8	12
2	Transcriptional Profiling of Age-Associated Gene Expression Changes in Human Circulatory CD1c+ Myeloid Dendritic Cell Subset. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 9-15.	3.6	29
3	Immune-stimulatory gene expression in stroma cells of African-American prostate cancer tissues Journal of Clinical Oncology, 2019, 37, e16544-e16544.	1.6	0
4	Assessing Researcher Needs for a Virtual Biobank. Biopreservation and Biobanking, 2017, 15, 203-210.	1.0	15
5	Abstract B04: The use of whole genome methylation scanning to define genes preferentially suppressed in African American Prostate Cancer. , 2017, , .		0
6	Abstract 1973: HER2 promotes super enhancer formation in breast cancer. , 2016, , .		0
7	Overexpression of Periostin in Stroma Positively Associated with Aggressive Prostate Cancer. PLoS ONE, 2015, 10, e0121502.	2.5	30
8	Associations of prostate cancer risk variants with disease aggressiveness: results of the NCI-SPORE Genetics Working Group analysis of 18,343 cases. Human Genetics, 2015, 134, 439-450.	3.8	45
9	A class of genes in the HER2 regulon that is poised for transcription in breast cancer cell lines and expressed in human breast tumors. Oncotarget, 2015, 6, 1286-1301.	1.8	8
10	The identification of trans-associations between prostate cancer GWAS SNPs and RNA expression differences in tumor-adjacent stroma. Oncotarget, 2015, 6, 1865-1873.	1.8	7
11	Six stroma-based RNA markers diagnostic for prostate cancer in European-Americans validated at the RNA and protein levels in patients in China. Oncotarget, 2015, 6, 16757-16765.	1.8	14
12	Flavokawain A induces deNEDDylation and Skp2 degradation leading to inhibition of tumorigenesis and cancer progression in the TRAMP transgenic mouse model. Oncotarget, 2015, 6, 41809-41824.	1.8	41
13	Abstract A63: A stroma-based 15 gene profile for prostate cancer suggests increased DNA methylation and senescence in the stroma of patients with poor prognosis. , 2015, , .		0
14	Abstract 1982: The HER2 Regulon:Identification of 113 genes that are directly controlled by HER2 and define four nodes of cancer stem cell networks. , 2015, , .		0
15	The Transcription Factor EGR1 Localizes to the Nucleolus and Is Linked to Suppression of Ribosomal Precursor Synthesis. PLoS ONE, 2014, 9, e96037.	2.5	16
16	Role of the Adjacent Stroma Cells in Prostate Cancer Development and Progression: Synergy between TGF- <i>β</i> and IGF Signaling. BioMed Research International, 2014, 2014, 1-8.	1.9	18
17	Expression differences between African American and Caucasian prostate cancer tissue reveals that stroma is the site of aggressive changes. International Journal of Cancer, 2014, 134, 81-91.	5.1	67
18	Generation of "Virtual―Control Groups for Single Arm Prostate Cancer Adjuvant Trials. PLoS ONE, 2014, 9, e85010.	2.5	11

#	Article	IF	CITATIONS
19	Abstract 3332: HER2-dependent RNA polymerase II binding in human breast tumors defines a regulon including a stem cell network. , 2014, , .		Ο
20	Abstract 1882: The expression phenotype of SNPs linked to the risk for prostate cancer. , 2014, , .		1
21	Early Growth Response 3 (Egr3) Is Highly Over-Expressed in Non-Relapsing Prostate Cancer but Not in Relapsing Prostate Cancer. PLoS ONE, 2013, 8, e54096.	2.5	39
22	A Gradient Boosting Algorithm for Survival Analysis via Direct Optimization of Concordance Index. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-8.	1.3	66
23	Natural Products and Transforming Growth Factor-beta (TGF-β) Signaling in Cancer Development and Progression. Current Cancer Drug Targets, 2013, 13, 500-505.	1.6	7
24	A Sample Selection Strategy to Boost the Statistical Power of Signature Detection in Cancer Expression Profile Studies. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 203-211.	1.7	2
25	Generation of virtual control groups for single-arm prostate cancer (PCa) adjuvant trials Journal of Clinical Oncology, 2013, 31, 239-239.	1.6	Ο
26	Abstract 2811: A prostate stroma-derived profile is predictive of early relapse and reflects potential mechanisms of aggressive disease , 2013, , .		0
27	Abstract 3649: Correlation of expression data and SNPs associated with aggressiveness of prostate cancer identifies specific associations , 2013, , .		Ο
28	An Accurate Prostate Cancer Prognosticator Using a Seven-Gene Signature Plus Gleason Score and Taking Cell Type Heterogeneity into Account. PLoS ONE, 2012, 7, e45178.	2.5	33
29	Expression Changes in the Stroma of Prostate Cancer Predict Subsequent Relapse. PLoS ONE, 2012, 7, e41371.	2.5	38
30	Plasma-Derived Exosomal Survivin, a Plausible Biomarker for Early Detection of Prostate Cancer. PLoS ONE, 2012, 7, e46737.	2.5	269
31	TGF-Î ² mediated DNA methylation in prostate cancer. Translational Andrology and Urology, 2012, 1, 78-88.	1.4	18
32	Abstract 3001: The expression of HER2 in human breast cancer cells leads to massive alteration of RNA polymerase II binding and gene activation. , 2012, , .		0
33	Abstract 440: Wnt signaling regulates neuropilin-2 (NRP2) expression and contributes to cancer cell invasiveness in castration-resistant prostate cancer (CRPC). , 2012, , .		Ο
34	Abstract 4284: Prognosis of prostate cancer using gene expression changes in stroma. , 2012, , .		0
35	Prostate Cancer Postoperative Nomogram Scores and Obesity. PLoS ONE, 2011, 6, e17382.	2.5	5
36	Diagnosis of Prostate Cancer Using Differentially Expressed Genes in Stroma. Cancer Research, 2011, 71, 2476-2487.	0.9	84

#	Article	IF	CITATIONS
37	Identification of Biomarkers for Prostate Cancer Prognosis Using a Novel Two-Step Cluster Analysis. Lecture Notes in Computer Science, 2011, , 63-74.	1.3	2
38	Siah2-Dependent Concerted Activity of HIF and FoxA2 Regulates Formation of Neuroendocrine Prostate Tumors. Cancer Cell, 2010, 18, 23-38.	16.8	208
39	<i>In silico</i> Estimates of Tissue Components in Surgical Samples Based on Expression Profiling Data. Cancer Research, 2010, 70, 6448-6455.	0.9	78
40	2160 DIAGNOSIS OF PROSTATE CANCER WITHOUT TUMOR CELLS USING DIFFERENTIALLY EXPRESSED GENES IN THE TUMOR MICROENVIRONMENT. Journal of Urology, 2010, 183, .	0.4	0
41	Abstract 1988:In silicoestimates of cell components in cancer tissue based on expression profiling data. , 2010, , .		0
42	Abstract 2735: Diagnosis of prostate cancer without tumor cells using differentially expressed genes in the tumor microenvironment. , 2010, , .		0
43	WIF1, a Wnt pathway inhibitor, regulates SKP2 and c-myc expression leading to G1 arrest and growth inhibition of human invasive urinary bladder cancer cells. Molecular Cancer Therapeutics, 2009, 8, 458-468.	4.1	92
44	The wisdom of the commons: ensemble tree classifiers for prostate cancer prognosis. Bioinformatics, 2009, 25, 54-60.	4.1	186
45	Timing of consent for the research use of surgically removed tissue. Cancer, 2009, 115, 4-9.	4.1	23
46	PTEN regulation by Akt–EGR1–ARF–PTEN axis. EMBO Journal, 2009, 28, 21-33.	7.8	122
47	Expression Profile of Human Gingival Fibroblasts Induced by Interleukinâ€1î² Reveals Central Role of Nuclear Factorâ€Kappa B in Stabilizing Human Gingival Fibroblasts During Inflammation. Journal of Periodontology, 2009, 80, 833-849.	3.4	42
48	Association Study between Gene Expression and Multiple Relevant Phenotypes with Cluster Analysis. Lecture Notes in Computer Science, 2009, , 1-12.	1.3	0
49	Egr1 regulates the coordinated expression of numerous EGF receptor target genes as identified by ChIP-on-chip. Genome Biology, 2008, 9, R166.	9.6	38
50	Bcl-B Expression in Human Epithelial and Nonepithelial Malignancies. Clinical Cancer Research, 2008, 14, 3011-3021.	7.0	51
51	Detection of Quantitative Trait Associated Genes Using Cluster Analysis. , 2008, , 83-94.		2
52	Editorial [Hot Topic: Antimicrobial Peptides, Mainly Defensins in Oral Cavity (Executive Editors: S.) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
53	Claudin-1 immunohistochemistry for distinguishing malignant from benign epithelial lesions of prostate. Prostate, 2007, 67, 907-910.	2.3	31

54Messenger RNAs under Differential Translational Control in Ki-rasâ€"Transformed Cells. Molecular
Cancer Research, 2006, 4, 47-60.3.430

#	Article	IF	CITATIONS
55	"Promoter Array" Studies Identify Cohorts of Genes Directly Regulated by Methylation, Copy Number Change, or Transcription Factor Binding in Human Cancer Cells. Annals of the New York Academy of Sciences, 2005, 1058, 162-185.	3.8	20
56	Early Growth Response 1 Acts as a Tumor Suppressor In vivo and In vitro via Regulation of p53. Cancer Research, 2005, 65, 5133-5143.	0.9	118
57	Essential Role of p38Î ³ in K-Ras Transformation Independent of Phosphorylation. Journal of Biological Chemistry, 2005, 280, 23910-23917.	3.4	61
58	Identification of Promoters Bound by c-Jun/ATF2 during Rapid Large-Scale Gene Activation following Genotoxic Stress. Molecular Cell, 2005, 17, 161.	9.7	1
59	Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines. Neoplasia, 2005, 7, 748-IN7.	5.3	92
60	<i>In silico</i> dissection of cell-type-associated patterns of gene expression in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 615-620.	7.1	189
61	From mRNA to tumor suppressor. Nature Genetics, 2004, 36, 937-938.	21.4	5
62	Inhibition of cell growth by EGR-1 in human primary cultures from malignant glioma. Cancer Cell International, 2004, 4, 1.	4.1	62
63	Identification of Promoters Bound by c-Jun/ATF2 during Rapid Large-Scale Gene Activation following Genotoxic Stress. Molecular Cell, 2004, 16, 521-535.	9.7	181
64	Antisense to the Early Growth Response-1 Gene (Egr-1) Inhibits Prostate Tumor Development in TRAMP Mice. Annals of the New York Academy of Sciences, 2003, 1002, 197-216.	3.8	51
65	Inhibition of Egr-1 expression reverses transformation of prostate cancer cells in vitro and in vivo. Oncogene, 2003, 22, 4194-4204.	5.9	99
66	In Vivo Cloning and Characterization of a New Growth Suppressor Protein TOE1 as a Direct Target Gene of Egr1. Journal of Biological Chemistry, 2003, 278, 14306-14312.	3.4	32
67	Early growth response 1 protein, an upstream gatekeeper of the p53 tumor suppressor, controls replicative senescence. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3233-3238.	7.1	111
68	Egr1 Promotes Growth and Survival of Prostate Cancer Cells. Journal of Biological Chemistry, 2003, 278, 11802-11810.	3.4	124
69	The Activation of c-Jun NH2-terminal Kinase (JNK) by DNA-damaging Agents Serves to Promote Drug Resistance via Activating Transcription Factor 2 (ATF2)-dependent Enhanced DNA Repair. Journal of Biological Chemistry, 2003, 278, 20582-20592.	3.4	144
70	Sensitization of Tumors to Chemotherapy Through Gene Therapy. Advances in Experimental Medicine and Biology, 2002, 465, 273-291.	1.6	9
71	Egr1 Transcription Factor: Multiple Roles in Prostate Tumor Cell Growth and Survival. Tumor Biology, 2002, 23, 93-102.	1.8	117
72	The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nature Cell Biology, 2001, 3, 1124-1128.	10.3	366

#	Article	IF	CITATIONS
73	Protective Role for c-Jun in the Cellular Response to DNA Damage. Journal of Biological Chemistry, 2001, 276, 28546-28553.	3.4	99
74	Identification of a CD28 Response Element in the CD40 Ligand Promoter. Journal of Immunology, 2001, 166, 2437-2443.	0.8	28
75	[24] Antisense methods for discrimination of phenotypic properties of closely related gene products: Jun kinase family. Methods in Enzymology, 2000, 314, 342-362.	1.0	8
76	Method for Cloning In Vivo Targets of the Egr-1 Transcription Factor. BioTechniques, 2000, 29, 162-169.	1.8	37
77	The Transcription Factor EGR-1 Directly Transactivates the Fibronectin Gene and Enhances Attachment of Human Glioblastoma Cell Line U251. Journal of Biological Chemistry, 2000, 275, 20315-20323.	3.4	125
78	c-Jun N-terminal Kinase Is Essential for Growth of Human T98G Glioblastoma Cells. Journal of Biological Chemistry, 2000, 275, 24767-24775.	3.4	89
79	Differential Effect of Retinoic Acid on Growth Regulation by Phorbol Ester in Human Cancer Cell Lines. Journal of Biological Chemistry, 1999, 274, 29779-29785.	3.4	34
80	Inhibition of Extracellular Signal-regulated Protein Kinase or c-Jun N-terminal Protein Kinase Cascade, Differentially Activated by Cisplatin, Sensitizes Human Ovarian Cancer Cell Line. Journal of Biological Chemistry, 1999, 274, 31648-31654.	3.4	158
81	The Transcription Factor ECR-1 Suppresses Transformation of Human Fibrosarcoma HT1080 Cells by Coordinated Induction of Transforming Growth Factor-β1, Fibronectin, and Plasminogen Activator Inhibitor-1. Journal of Biological Chemistry, 1999, 274, 4400-4411.	3.4	105
82	p53 and Egr-1 additively suppress transformed growth in HT1080 cells but Egr-1 counteracts p53-dependent apoptosis. Oncogene, 1999, 18, 3633-3642.	5.9	81
83	The Jun Kinase 2 Isoform Is Preferentially Required for Epidermal Growth Factor-Induced Transformation of Human A549 Lung Carcinoma Cells. Molecular and Cellular Biology, 1999, 19, 1938-1949.	2.3	135
84	Molecular Determinants of AHPN (CD437)-Induced Growth Arrest and Apoptosis in Human Lung Cancer Cell Lines. Molecular and Cellular Biology, 1998, 18, 4719-4731.	2.3	165
85	The Jun Kinase/Stress-activated Protein Kinase Pathway Functions to Regulate DNA Repair and Inhibition of the Pathway Sensitizes Tumor Cells to Cisplatin. Journal of Biological Chemistry, 1997, 272, 14041-14044.	3.4	197
86	The JUN Kinase/Stress-activated Protein Kinase Pathway Is Required for Epidermal Growth Factor Stimulation of Growth of Human A549 Lung Carcinoma Cells. Journal of Biological Chemistry, 1997, 272, 33422-33429.	3.4	151
87	The Cloning Debates and Progress in Biotechnology. Clinical Chemistry, 1997, 43, 2019-2020.	3.2	1
88	Decreased Egr-1 expression in human, mouse and rat mammary cells and tissues correlates with tumor formation. , 1997, 72, 102-109.		205
89	Reciprocal modulation between Sp1 and Egrâ€1. Journal of Cellular Biochemistry, 1997, 66, 489-499.	2.6	3
90	EGR-1, The Reluctant Suppression Factor:. Critical Reviews in Oncogenesis, 1996, 7, 101-126.	0.4	104

#	Article	IF	CITATIONS
91	Use of wild-typep53 to achieve complete treatment sensitization of tumor cells expressing endogenous mutant p53. Molecular Carcinogenesis, 1995, 14, 275-285.	2.7	91
92	Characterization of a new human glioblastoma cell line that expresses mutant P53 and lacks activation of the PDGF pathway. In Vitro Cellular and Developmental Biology - Animal, 1995, 31, 207-214.	1.5	10
93	Injection of Colon Carcinoma Patients with Autologous Irradiated Tumor Cells and Fibroblasts Genetically Modified to Secrete Interleukin-2 (IL-2): A Phase I Study. San Diego Regional Cancer Center, San Diego, California. Human Gene Therapy, 1995, 6, 195-204.	2.7	31
94	Transformation-specific pattern of phosphorylation of c-Jun, Jun-B, Jun-D and Egr-1 in v-sis transformed cells. Carcinogenesis, 1994, 15, 1667-1674.	2.8	13
95	Analysis of a transformed cell line using antisense c-fos RNA. Gene, 1988, 72, 253-265.	2.2	25
96	Antisense RNA to the C-fos gene: Restoration of density-dependent growth arrest in a transformed cell line. Biochemical and Biophysical Research Communications, 1987, 147, 288-294.	2.1	35
97	The proto-oncogene c-fos encodes a potential regulatory site that is disrupted by viral transduction. Journal of Theoretical Biology, 1987, 126, 243-246.	1.7	1
98	Calcium binding by troponin-C and homologs is correlated with the position and linear density of "β-turn forming―residues. Journal of Theoretical Biology, 1979, 76, 297-310.	1.7	28
99	Comparison of the calcium- and magnesium-induced structural changes of troponin-C. Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1978, 535, 11-24.	1.7	48
100	Direct identification of the high and low affinity calcium binding sites of troponin-C. Biochemical and Biophysical Research Communications, 1978, 82, 1132-1139.	2.1	47
101	Calcium binding by troponin-C. A proton magnetic resonance study. Journal of Molecular Biology, 1977, 115, 743-760.	4.2	105
102	Near-ultraviolet tyrosyl circular dichroism of pig insulin monomers, dimers, and hexamers. Dipole-dipole coupling calculations in the monopole approximation. Biochemistry, 1976, 15, 3875-3884.	2.5	87
103	Structure of insulin in 4-zinc insulin. Nature, 1976, 261, 166-168.	27.8	287
104	Crystallisation of troponin-C. Nature, 1975, 254, 634-635.	27.8	21