List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2529603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transport Processes in the Gulf of Mexico Along the River-Estuary-Shelf-Ocean Continuum: a Review of Research from the Gulf of Mexico Research Initiative. Estuaries and Coasts, 2022, 45, 621-657.	2.2	10
2	Remote silicate supply regulates spring phytoplankton bloom magnitude in the Gulf of Maine. Limnology and Oceanography Letters, 2022, 7, 277-285.	3.9	6
3	Physical Characteristics and Evolution of a Long-Lasting Mesoscale Cyclonic Eddy in the Straits of Florida. Frontiers in Marine Science, 2022, 9, .	2.5	1
4	On the Evolution of the Gulf of Mexico Loop Current Through Its Penetrative, Ring Shedding and Retracted States. Advances in Space Research, 2022, 69, 4058-4077.	2.6	14
5	Initial estuarine response to inorganic nutrient inputs from a legacy mining facility adjacent to Tampa Bay, Florida. Marine Pollution Bulletin, 2022, 178, 113598.	5.0	18
6	Termination of the 2018 Florida red tide event: A tracer model perspective. Estuarine, Coastal and Shelf Science, 2022, 272, 107901.	2.1	8
7	Spatial and Temporal Characteristics of the Submesoscale Energetics in the Gulf of Mexico. Journal of Physical Oceanography, 2021, 51, 475-489.	1.7	13
8	Eddies Connect the Tropical Atlantic Ocean and the Gulf of Mexico. Geophysical Research Letters, 2021, 48, e2020GL091277.	4.0	20
9	Ten years of modeling the Deepwater Horizon oil spill. Environmental Modelling and Software, 2021, 142, 105070.	4.5	17
10	Towards integrated modeling of the long-term impacts of oil spills. Marine Policy, 2021, 131, 104554.	3.2	10
11	Impacts of Hurricane Irma on the Circulation and Transport in Florida Bay and the Charlotte Harbor Estuary. Estuaries and Coasts, 2020, 43, 1194-1216.	2.2	19
12	Instabilities and Multiscale Interactions Underlying the Loop Current Eddy Shedding in the Gulf of Mexico. Journal of Physical Oceanography, 2020, 50, 1289-1317.	1.7	42
13	On the Momentum Balance of Tampa Bay. Journal of Geophysical Research: Oceans, 2019, 124, 4492-4510.	2.6	14
14	Ocean Circulation in the Western Gulf of Mexico Using Selfâ€Organizing Maps. Journal of Geophysical Research: Oceans, 2019, 124, 4152-4167.	2.6	25
15	Statistical simulation of ocean current patterns using autoregressive logistic regression models: A case study in the Gulf of Mexico. Ocean Modelling, 2019, 136, 1-12.	2.4	20
16	The Coastal Ocean Circulation Influence on the 2018 West Florida Shelf <scp><i>K</i>.Â<i>brevis</i></scp> Red Tide Bloom. Journal of Geophysical Research: Oceans, 2019, 124, 2501-2512.	2.6	74
17	Submesoscale and Mesoscale Eddies in the Florida Straits: Observations from Satellite Ocean Color Measurements. Geophysical Research Letters, 2019, 46, 13262-13270.	4.0	26
18	Data Return Aspects of CODAR and WERA High-Frequency Radars in Mapping Currents. Springer Oceanography, 2018, , 227-240.	0.3	1

#	Article	IF	CITATIONS
19	The Tampa Bay Coastal Ocean Model Performance for Hurricane Irma. Marine Technology Society Journal, 2018, 52, 33-42.	0.4	20
20	Evaluation of Satellite-Derived SST Products in Identifying the Rapid Temperature Drop on the West Florida Shelf Associated With Hurricane Irma. Marine Technology Society Journal, 2018, 52, 43-50.	0.4	15
21	Winds on the West Florida Shelf: Regional comparisons between observations and model estimates. Journal of Geophysical Research: Oceans, 2017, 122, 834-846.	2.6	17
22	On the movement of Deepwater Horizon Oil to northern Gulf beaches. Ocean Modelling, 2017, 111, 81-97.	2.4	50
23	On the Loop Current Penetration into the Gulf of Mexico. Journal of Geophysical Research: Oceans, 2017, 122, 9679-9694.	2.6	55
24	Did Deepwater Horizon hydrocarbons transit to the west Florida continental shelf?. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 129, 259-272.	1.4	40
25	Patterns of the loop current system and regions of sea surface height variability in the eastern Gulf of Mexico revealed by the selfâ€organizing maps. Journal of Geophysical Research: Oceans, 2016, 121, 2347-2366.	2.6	71
26	West Florida shelf upwelling: Origins and pathways. Journal of Geophysical Research: Oceans, 2016, 121, 5672-5681.	2.6	35
27	Offshore forcing on the "pressure point―of the West Florida Shelf: Anomalous upwelling and its influence on harmful algal blooms. Journal of Geophysical Research: Oceans, 2016, 121, 5501-5515.	2.6	55
28	Karenia brevis blooms on the West Florida Shelf: A comparative study of the robust 2012 bloom and the nearly null 2013 event. Continental Shelf Research, 2016, 120, 106-121.	1.8	36
29	Glider Salinity Correction for Unpumped CTD Sensors across a Sharp Thermocline. , 2015, , 305-325.		8
30	Introduction to Coastal Ocean Observing Systems. , 2015, , 1-10.		19
31	Effect of Radio Frequency Interference (RFI) Noise Energy on WERA Performance Using the "Listen Before Talk―Adaptive Noise Procedure on the West Florida Shelf. , 2015, , 229-247.		8
32	Improvements in ocean surface radar applications through real-time data quality-control. , 2015, , .		6
33	Basic Tenets for Coastal Ocean Ecosystems Monitoring. , 2015, , 40-57.		13
34	Assessment of CODAR SeaSonde and WERA HF Radars in Mapping Surface Currents on the West Florida Shelf*. Journal of Atmospheric and Oceanic Technology, 2014, 31, 1363-1382.	1.3	81
35	Real-time quality control of current velocity data on individual grid cells in WERA HF radar. , 2014, , .		18
36	Initial surface current measurements on the West Florida shelf using WERA HF ocean radar with		9

³⁶ multiple input multiple output (MIMO) synthetic aperture. , 2014, , .

#	Article	lF	CITATIONS
37	Evaluation of altimetry-derived surface current products using Lagrangian drifter trajectories in the eastern Gulf of Mexico. Journal of Geophysical Research: Oceans, 2014, 119, 2827-2842.	2.6	76
38	Comparisons of different ensemble schemes for glider data assimilation on West Florida Shelf. Ocean Modelling, 2014, 81, 13-24.	2.4	32
39	Why no red tide was observed on the West Florida Continental Shelf in 2010. Harmful Algae, 2014, 38, 119-126.	4.8	59
40	Evolution of the USF/CMS CODAR and WERA HF radar network. , 2012, , .		12
41	A Critique of Alternative Power Generation for Florida by Mechanical and Solar Means. Marine Technology Society Journal, 2012, 46, 12-23.	0.4	13
42	Comparison of the X-TRACK altimetry estimated currents with moored ADCP and HF radar observations on the West Florida Shelf. Advances in Space Research, 2012, 50, 1085-1098.	2.6	53
43	Seasonal variability on the West Florida Shelf. Progress in Oceanography, 2012, 104, 80-98.	3.2	78
44	Evaluation of trajectory modeling in different dynamic regions using normalized cumulative Lagrangian separation. Journal of Geophysical Research, 2011, 116, .	3.3	109
45	Tracking the Deepwater Horizon Oil Spill: A Modeling Perspective. Eos, 2011, 92, 45-46.	0.1	126
46	Did the northeastern Gulf of Mexico become greener after the Deepwater Horizon oil spill?. Geophysical Research Letters, 2011, 38, .	4.0	117
47	Combining numerical ocean circulation models with satellite observations in a trajectory forecast system: a rapid response to the Deepwater Horizon oil spill. , 2011, , .		5
48	Introduction to Monitoring and Modeling the Deepwater Horizon Oil Spill. Geophysical Monograph Series, 2011, , 1-7.	0.1	6
49	Evolution of the Loop Current System During the Deepwater Horizon Oil Spill Event as Observed With Drifters and Satellites. Geophysical Monograph Series, 2011, , 91-101.	0.1	31
50	Trajectory Forecast as a Rapid Response to the Deepwater Horizon Oil Spill. Geophysical Monograph Series, 2011, , 153-165.	0.1	43
51	Surface Drift Predictions of the Deepwater Horizon Spill: The Lagrangian Perspective. Geophysical Monograph Series, 2011, , 179-195.	0.1	26
52	Tracking Subsurface Oil in the Aftermath of the Deepwater Horizon Well Blowout. Geophysical Monograph Series, 2011, , 205-215.	0.1	17
53	Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. Geophysical Monograph Series, 2011, , .	0.1	41
54	HF Radar Performance in a Low-Energy Environment: CODAR SeaSonde Experience on the West Florida Shelf*. Journal of Atmospheric and Oceanic Technology, 2010, 27, 1689-1710.	1.3	69

#	Article	IF	CITATIONS
55	Interaction between the East China Sea Kuroshio and the Ryukyu Current as revealed by the selfâ€organizing map. Journal of Geophysical Research, 2010, 115, .	3.3	43
56	A model study of tide- and wind-induced mixing in the Columbia River Estuary and plume. Continental Shelf Research, 2009, 29, 278-291.	1.8	146
57	West Florida Shelf mean circulation observed with longâ€ŧerm moorings. Geophysical Research Letters, 2009, 36, .	4.0	45
58	Evaluation of a coastal ocean circulation model for the Columbia River plume in summer 2004. Journal of Geophysical Research, 2009, 114, .	3.3	60
59	Columbia River plume patterns in summer 2004 as revealed by a hindcast coastal ocean circulation model. Geophysical Research Letters, 2009, 36, .	4.0	55
60	Current Patterns on the West Florida Shelf from Joint Self-Organizing Map Analyses of HF Radar and ADCP Data. Journal of Atmospheric and Oceanic Technology, 2007, 24, 702-712.	1.3	69
61	Ocean Currents and Sea Surface Heights Estimated across the West Florida Shelf. Journal of Physical Oceanography, 2007, 37, 1697-1713.	1.7	79
62	Rectification of the Bias in the Wavelet Power Spectrum. Journal of Atmospheric and Oceanic Technology, 2007, 24, 2093-2102.	1.3	373
63	Performance evaluation of the self-organizing map for feature extraction. Journal of Geophysical Research, 2006, 111, .	3.3	255
64	Sea Surface Temperature Patterns on the West Florida Shelf Using Growing Hierarchical Self-Organizing Maps. Journal of Atmospheric and Oceanic Technology, 2006, 23, 325-338.	1.3	68
65	Momentum balance diagnoses for the West Florida Shelf. Continental Shelf Research, 2005, 25, 2054-2074.	1.8	53
66	Patterns of ocean current variability on the West Florida Shelf using the self-organizing map. Journal of Geophysical Research, 2005, 110, .	3.3	187
67	Coastal ocean wind fields gauged against the performance of an ocean circulation model. Geophysical Research Letters, 2004, 31, .	4.0	40
68	Circulation in the South China Sea in summer of 1998. Science Bulletin, 2000, 45, 1648-1655.	1.7	22
69	The Kuroshio East of Taiwan and in the East China Sea and the currents East of Ryukyu Islands during early summer of 1996. Journal of Oceanography, 1998, 54, 217-226.	1.7	48
70	A Review of Self-Organizing Map Applications in Meteorology and Oceanography. , 0, , .		110
71	West Florida Shelf Circulation on Synoptic, Seasonal, and Interannual Time Scales. Geophysical Monograph Series, 0, , 325-347.	0.1	41
72	Satellites, models combine to track Deepwater Horizon oil spill. SPIE Newsroom, 0, , .	0.1	1

#	Article	IF	CITATIONS
73	Local And Deep-Ocean Forcing Effects on the West Florida Continental Shelf Circulation and Ecology. Frontiers in Marine Science, 0, 9, .	2.5	11