
Liang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2528919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Voice production in a MRI-based subject-specific vocal fold model with parametrically controlled medial surface shape. Journal of the Acoustical Society of America, 2019, 146, 4190-4198.	1.1	24
2	A parametric vocal fold model based on magnetic resonance imaging. Journal of the Acoustical Society of America, 2016, 140, EL159-EL165.	1.1	15
3	Improvement of Electrolaryngeal Speech Quality Using a Supraglottal Voice Source With Compensation of Vocal Tract Characteristics. IEEE Transactions on Biomedical Engineering, 2013, 60, 1965-1974.	4.2	11
4	Three-dimensional vocal fold structural change due to implant insertion in medialization laryngoplasty. PLoS ONE, 2020, 15, e0228464.	2.5	11
5	Visualizing the movement of the contact between vocal folds during vibration by using array-based transmission ultrasonic glottography. Journal of the Acoustical Society of America, 2017, 141, 3312-3322.	1.1	8
6	Design and Evaluation of an Electrolarynx with Tonal Control Function for Mandarin. Folia Phoniatrica Et Logopaedica, 2012, 64, 290-296.	1.1	7
7	A Computational Study of Vocal Fold Dehydration During Phonation. IEEE Transactions on Biomedical Engineering, 2017, 64, 2938-2948.	4.2	7
8	Visualizing the mechanical wave of vocal fold tissue during phonation using electroglottogram-triggered ultrasonography. Journal of the Acoustical Society of America, 2018, 143, EL425-EL429.	1.1	7
9	Radiated Noise Suppression for Electrolarynx Speech Based on Multiband Time-Domain Amplitude Modulation. IEEE/ACM Transactions on Audio Speech and Language Processing, 2018, 26, 1585-1593.	5.8	7
10	Impact of the Paraglottic Space on Voice Production in an MRI-Based Vocal Fold Model. Journal of Voice, 2023, 37, 633.e15-633.e23.	1.5	7
11	Assessment of a Method for the Automatic On/Off Control of an Electrolarynx via Lip Deformation. Journal of Voice, 2012, 26, 674.e21-674.e30.	1.5	6
12	Visualizing the Vibration of Laryngeal Tissue during Phonation Using Ultrafast Plane Wave Ultrasonography. Ultrasound in Medicine and Biology, 2016, 42, 2812-2825.	1.5	6
13	Development and Evaluation of On/Off Control for Electrolaryngeal Speech Via Artificial Neural Network Based on Visual Information of Lips. Journal of Voice, 2013, 27, 259.e7-259.e16.	1.5	3
14	Computational Study of the Impact of Dehydration-Induced Vocal Fold Stiffness Changes on Voice Production. Journal of Voice, 2022, , .	1.5	3
15	Acoustic influence of the neck tissue on Mandarin voiceless consonant production of electrolaryngeal speech. Speech Communication, 2017, 87, 31-39.	2.8	2
16	Reconstruction of Mandarin Electrolaryngeal Fricatives With Hybrid Noise Source. IEEE/ACM Transactions on Audio Speech and Language Processing, 2019, 27, 383-391.	5.8	2