Jennifer A Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2528812/publications.pdf

Version: 2024-02-01

2538 1974 44,077 242 96 206 citations h-index g-index papers 250 250 250 35135 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biomimetic 4D printing. Nature Materials, 2016, 15, 413-418.	13.3	2,268
2	3D Bioprinting of Vascularized, Heterogeneous Cell‣aden Tissue Constructs. Advanced Materials, 2014, 26, 3124-3130.	11.1	1,686
3	An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 2016, 536, 451-455.	13.7	1,557
4	Self-healing materials with microvascularÂnetworks. Nature Materials, 2007, 6, 581-585.	13.3	1,379
5	Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Advanced Materials, 2014, 26, 6307-6312.	11.1	1,314
6	Direct Ink Writing of 3D Functional Materials. Advanced Functional Materials, 2006, 16, 2193-2204.	7.8	1,261
7	3Dâ€Printing of Lightweight Cellular Composites. Advanced Materials, 2014, 26, 5930-5935.	11.1	1,258
8	Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3179-3184.	3.3	1,187
9	Printing soft matter in three dimensions. Nature, 2016, 540, 371-378.	13.7	1,134
10	Colloidal Processing of Ceramics. Journal of the American Ceramic Society, 2000, 83, 2341-2359.	1.9	1,076
11	3D Printing of Interdigitated Li″on Microbattery Architectures. Advanced Materials, 2013, 25, 4539-4543.	11.1	1,074
12	Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes. Science, 2009, 323, 1590-1593.	6.0	1,072
13	Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nature Materials, 2017, 16, 303-308.	13.3	652
14	Voxelated soft matter via multimaterial multinozzle 3D printing. Nature, 2019, 575, 330-335.	13.7	644
15	Omnidirectional Printing of 3D Microvascular Networks. Advanced Materials, 2011, 23, H178-83.	11.1	635
16	Direct Ink Writing of Three-Dimensional Ceramic Structures. Journal of the American Ceramic Society, 2006, 89, 3599-3609.	1.9	631
	<u>and the property of the control of </u>		
17	Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nature Materials, 2003, 2, 265-271.	13.3	627

#	Article	IF	CITATIONS
19	Penâ€onâ€Paper Flexible Electronics. Advanced Materials, 2011, 23, 3426-3430.	11.1	619
20	Ultrathin silicon solar microcells for semitransparent, mechanically flexible andÂmicroconcentrator module designs. Nature Materials, 2008, 7, 907-915.	13.3	615
21	Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Science Advances, 2019, 5, eaaw2459.	4.7	563
22	Colloidal Inks for Directed Assembly of 3-D Periodic Structures. Langmuir, 2002, 18, 5429-5437.	1.6	561
23	Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nature Methods, 2019, 16, 255-262.	9.0	559
24	Hybrid 3D Printing of Soft Electronics. Advanced Materials, 2017, 29, 1703817.	11.1	501
25	Conformal Printing of Electrically Small Antennas on Threeâ€Dimensional Surfaces. Advanced Materials, 2011, 23, 1335-1340.	11.1	499
26	Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips. Scientific Reports, 2016, 6, 34845.	1.6	496
27	3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order. Advanced Materials, 2018, 30, 1706164.	11.1	467
28	Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures. Advanced Functional Materials, 2017, 27, 1604619.	7.8	447
29	Soft Somatosensitive Actuators via Embedded 3D Printing. Advanced Materials, 2018, 30, e1706383.	11.1	398
30	Topology Optimized Architectures with Programmable Poisson's Ratio over Large Deformations. Advanced Materials, 2015, 27, 5523-5527.	11.1	380
31	Reactive Silver Inks for Patterning High-Conductivity Features at Mild Temperatures. Journal of the American Chemical Society, 2012, 134, 1419-1421.	6.6	377
32	Direct writing in three dimensions. Materials Today, 2004, 7, 32-39.	8.3	375
33	Capacitive Soft Strain Sensors via Multicore–Shell Fiber Printing. Advanced Materials, 2015, 27, 2440-2446.	11.1	372
34	Selfâ∈Healing Materials with Interpenetrating Microvascular Networks. Advanced Materials, 2009, 21, 4143-4147.	11.1	366
35	Long range interactions in nanoscale science. Reviews of Modern Physics, 2010, 82, 1887-1944.	16.4	359
36	Microperiodic structures: Direct writing of three-dimensional webs. Nature, 2004, 428, 386-386.	13.7	340

#	Article	IF	CITATIONS
37	Directed Colloidal Assembly of 3D Periodic Structures. Advanced Materials, 2002, 14, 1279-1283.	11.1	324
38	Biocompatible Silk Printed Optical Waveguides. Advanced Materials, 2009, 21, 2411-2415.	11.1	308
39	3D Printing of Customized Liâ€lon Batteries with Thick Electrodes. Advanced Materials, 2018, 30, e1703027.	11.1	304
40	Untethered soft robotic matter with passive control of shape morphing and propulsion. Science Robotics, 2019, 4, .	9.9	268
41	Directâ€Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth. Advanced Materials, 2009, 21, 2407-2410.	11.1	266
42	Directâ€Write Assembly of Microperiodic Silk Fibroin Scaffolds for Tissue Engineering Applications. Advanced Functional Materials, 2008, 18, 1883-1889.	7.8	261
43	Delivery of Twoâ€Part Selfâ€Healing Chemistry via Microvascular Networks. Advanced Functional Materials, 2009, 19, 1399-1405.	7.8	260
44	Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics. Advanced Materials, 2015, 27, 6683-6688.	11.1	258
45	Microfluidic Printheads for Multimaterial 3D Printing of Viscoelastic Inks. Advanced Materials, 2015, 27, 3279-3284.	11.1	258
46	Shape-shifting structured lattices via multimaterial 4D printing. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20856-20862.	3.3	257
47	Stable propagation of mechanical signals in soft media using stored elastic energy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9722-9727.	3.3	254
48	Laser-assisted direct ink writing of planar and 3D metal architectures. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6137-6142.	3.3	252
49	Microfluidic Assembly of Homogeneous and Janus Colloid-Filled Hydrogel Granules. Langmuir, 2006, 22, 8618-8622.	1.6	251
50	Renal reabsorption in 3D vascularized proximal tubule models. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5399-5404.	3.3	242
51	Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials, 2005, 26, 5632-5639.	5.7	238
52	Nanoparticle halos: A new colloid stabilization mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8950-8954.	3.3	222
53	Fugitive Inks for Direct-Write Assembly of Three-Dimensional Microvascular Networks. Advanced Materials, 2005, 17, 395-399.	11.1	216
54	Inkjet Printing of Conductive Inks with High Lateral Resolution on Omniphobic "R ^F Paper― for Paperâ€Based Electronics and MEMS. Advanced Materials, 2014, 26, 4677-4682.	11.1	216

#	Article	IF	Citations
55	Active mixing of complex fluids at the microscale. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12293-12298.	3.3	210
56	Three-dimensional printed electronics. Nature, 2015, 518, 42-43.	13.7	209
57	3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures. Advanced Functional Materials, 2011, 21, 47-54.	7.8	205
58	Rotational 3D printing of damage-tolerant composites with programmable mechanics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1198-1203.	3.3	205
59	Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power applications. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20149-20154.	3.3	198
60	3D Printable and Reconfigurable Liquid Crystal Elastomers with Lightâ€Induced Shape Memory via Dynamic Bond Exchange. Advanced Materials, 2020, 32, e1905682.	11.1	195
61	Architected cellular ceramics with tailored stiffness via direct foam writing. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1832-1837.	3.3	187
62	Solâ€Gel Inks for Directâ€Write Assembly of Functional Oxides. Advanced Materials, 2007, 19, 3485-3489.	11.1	185
63	Direct-Write Assembly of Three-Dimensional Photonic Crystals: Conversion of Polymer Scaffolds to Silicon Hollow-Woodpile Structures. Advanced Materials, 2006, 18, 461-465.	11.1	179
64	Direct-write assembly of ceramics from colloidal inks. Current Opinion in Solid State and Materials Science, 2002, 6, 245-250.	5.6	173
65	Patterning Colloidal Films via Evaporative Lithography. Physical Review Letters, 2007, 98, 148301.	2.9	170
66	In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing. Journal of Biomedical Materials Research - Part A, 2007, 83A, 747-758.	2.1	167
67	Viscoplastic Matrix Materials for Embedded 3D Printing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23353-23361.	4.0	167
68	Multidimensional Architectures for Functional Optical Devices. Advanced Materials, 2010, 22, 1084-1101.	11.1	166
69	Encapsulated liquid sorbents for carbon dioxide capture. Nature Communications, 2015, 6, 6124.	5.8	161
70	High-Power Aqueous Zinc-lon Batteries for Customized Electronic Devices. ACS Nano, 2018, 12, 11838-11846.	7.3	158
71	Nanoparticle Inks for Directed Assembly of Three-Dimensional Periodic Structures. Advanced Materials, 2003, 15, 1639-1643.	11.1	149
72	Printed Origami Structures. Advanced Materials, 2010, 22, 2251-2254.	11.1	144

#	Article	IF	CITATIONS
73	Binder Distribution in Ceramic Greenware During Thermolysis. Journal of the American Ceramic Society, 1989, 72, 1192-1199.	1.9	142
74	BINDER REMOVAL FROM CERAMICS. Annual Review of Materials Research, 1997, 27, 147-173.	5.5	141
75	Transparent conductive grids via direct writing of silver nanoparticle inks. Nanoscale, 2011, 3, 2700.	2.8	140
76	Colloidal ribbons and rings from Janus magnetic rods. Nature Communications, 2013, 4, 1516.	5.8	140
77	Directâ€Write Assembly of 3D Silk/Hydroxyapatite Scaffolds for Bone Coâ€Cultures. Advanced Healthcare Materials, 2012, 1, 729-735.	3.9	136
78	Structural optimization of 3D-printed synthetic spider webs for high strength. Nature Communications, 2015, 6, 7038.	5.8	136
79	Acoustophoretic printing. Science Advances, 2018, 4, eaat1659.	4.7	133
80	Highâ€Throughput Printing via Microvascular Multinozzle Arrays. Advanced Materials, 2013, 25, 96-102.	11,1	132
81	3D Printing of Interdigitated Dielectric Elastomer Actuators. Advanced Functional Materials, 2020, 30, 1907375.	7.8	132
82	Comb Polymer Architecture Effects on the Rheological Property Evolution of Concentrated Cement Suspensions. Journal of the American Ceramic Society, 2004, 87, 1643-1652.	1.9	131
83	Innervated, Selfâ€Sensing Liquid Crystal Elastomer Actuators with Closed Loop Control. Advanced Materials, 2021, 33, e2101814.	11.1	128
84	Architected Lattices with High Stiffness and Toughness via Multicore–Shell 3D Printing. Advanced Materials, 2018, 30, e1705001.	11.1	127
85	Poly(acrylic acid)-Poly(ethylene oxide) Comb Polymer Effects on BaTiO3Nanoparticle Suspension Stability. Journal of the American Ceramic Society, 2004, 87, 181-186.	1.9	116
86	Screen Printing of Highly Loaded Silver Inks on Plastic Substrates Using Silicon Stencils. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12619-12624.	4.0	114
87	Nanoparticle Engineering of Complex Fluid Behavior. Langmuir, 2001, 17, 8414-8421.	1.6	113
88	Redox Active Colloids as Discrete Energy Storage Carriers. Journal of the American Chemical Society, 2016, 138, 13230-13237.	6.6	111
89	Direct-write assembly of biomimetic microvascular networks for efficient fluid transport. Soft Matter, 2010, 6, 739-742.	1.2	110
90	Directâ€Write Fabrication of Pb(Nb,Zr,Ti)O ₃ Devices: Influence of Paste Rheology on Print Morphology and Component Properties. Journal of the American Ceramic Society, 2001, 84, 2462-2468.	1.9	103

#	Article	lF	Citations
91	Perovskite nanowire–block copolymer composites with digitally programmable polarization anisotropy. Science Advances, 2019, 5, eaav8141.	4.7	103
92	Polyelectrolyte Effects on the Rheological Properties of Concentrated Cement Suspensions. Journal of the American Ceramic Society, 2000, 83, 1905-1913.	1.9	102
93	Nanoparticle-Mediated Epitaxial Assembly of Colloidal Crystals on Patterned Substrates. Langmuir, 2004, 20, 5262-5270.	1.6	100
94	Microfabricated Deposition Nozzles for Direct-Write Assembly of Three-Dimensional Periodic Structures. Advanced Materials, 2005, 17, 289-293.	11.1	99
95	Printing mesoscale architectures. MRS Bulletin, 2015, 40, 943-950.	1.7	99
96	Aggregation Effects on the Compressive Flow Properties and Drying Behavior of Colloidal Silica Suspensions. Journal of the American Ceramic Society, 1999, 82, 2345-2358.	1.9	98
97	Rheological Property and Stress Development during Drying of Tape-Cast Ceramic Layers. Journal of the American Ceramic Society, 1996, 79, 3225-3234.	1.9	94
98	Accelerated Self-Healing Via Ternary Interpenetrating Microvascular Networks. Advanced Functional Materials, 2011, 21, 4320-4326.	7.8	91
99	Controlling Material Reactivity Using Architecture. Advanced Materials, 2016, 28, 1934-1939.	11.1	91
100	Chemorheology of Aqueousâ€Based Aluminaâ€Poly(vinyl alcohol) Gelcasting Suspensions. Journal of the American Ceramic Society, 1999, 82, 521-528.	1.9	88
101	Solid Freeform Fabrication of Aqueous Alumina–Poly(vinyl alcohol) Gelcasting Suspensions. Journal of the American Ceramic Society, 2000, 83, 2409-2416.	1.9	86
102	Gigahertz Electromagnetic Structures via Direct Ink Writing for Radioâ€Frequency Oscillator and Transmitter Applications. Advanced Materials, 2017, 29, 1605198.	11.1	86
103	Stopâ€Flow Lithography of Colloidal, Glass, and Silicon Microcomponents. Advanced Materials, 2008, 20, 4734-4739.	11.1	85
104	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	13.7	84
105	Towards enduring autonomous robots via embodied energy. Nature, 2022, 602, 393-402.	13.7	84
106	Shape Evolution and Stress Development during Latexâ~'Silica Film Formation. Langmuir, 2002, 18, 4689-4698.	1.6	83
107	Effect of Nonadsorbed Polymer on the Stability of Weakly Flocculated Suspensions. Langmuir, 1996, 12, 3413-3424.	1.6	82
108	Architected Polymer Foams via Direct Bubble Writing. Advanced Materials, 2019, 31, e1904668.	11.1	82

#	Article	IF	Citations
109	A Germanium Inverse Woodpile Structure with a Large Photonic Band Gap. Advanced Materials, 2007, 19, 1567-1570.	11.1	77
110	PAA/PEO comb polymer effects on rheological properties and interparticle forces in aqueous silica suspensions. Journal of Colloid and Interface Science, 2003, 262, 274-281.	5.0	76
111	Marangoni Effects on Evaporative Lithographic Patterning of Colloidal Films. Langmuir, 2008, 24, 3681-3685.	1.6	76
112	Photocurable Liquid Core–Fugitive Shell Printing of Optical Waveguides. Advanced Materials, 2011, 23, 5055-5058.	11.1	76
113	Biphasic Electrode Suspensions for Liâ€lon Semiâ€solid Flow Cells with High Energy Density, Fast Charge Transport, and Lowâ€Dissipation Flow. Advanced Energy Materials, 2015, 5, 1500535.	10.2	76
114	Janus Colloidal Matchsticks. Journal of the American Chemical Society, 2012, 134, 12901-12903.	6.6	75
115	Piezoelectric properties of 3-Xperiodic Pb(ZrxTi1â^'x)O3â€"polymer composites. Journal of Applied Physics, 2002, 92, 6119-6127.	1.1	71
116	Robocast Pb(Zr0.95Ti0.05)O3Ceramic Monoliths and Composites. Journal of the American Ceramic Society, 2001, 84, 872-874.	1.9	70
117	Polymer Microvascular Network Composites. Journal of Composite Materials, 2010, 44, 2587-2603.	1.2	69
118	Phase Behavior and Rheological Properties of Polyelectrolyte Inks for Direct-Write Assembly. Langmuir, 2005, 21, 457-464.	1.6	68
119	Biomimetic silicification of 3D polyamine-rich scaffolds assembled by direct ink writing. Soft Matter, 2006, 2, 205.	1.2	68
120	Design, fabrication, and inÂvitro testing of novel three-dimensionally printed tympanic membrane grafts. Hearing Research, 2016, 340, 191-203.	0.9	68
121	Engineered 3D-printed artificial axons. Scientific Reports, 2018, 8, 478.	1.6	67
122	Printing Reconfigurable Bundles of Dielectric Elastomer Fibers. Advanced Functional Materials, 2021, 31, 2010643.	7.8	63
123	Designing colloidal suspensions for directed materials assembly. Current Opinion in Colloid and Interface Science, 2011, 16, 71-79.	3.4	57
124	Lightweight 3D cellular composites inspired by balsa. Bioinspiration and Biomimetics, 2017, 12, 026014.	1.5	56
125	Directed Colloidal Assembly of Linear and Annular Lead Zirconate Titanate Arrays. Journal of the American Ceramic Society, 2004, 87, 293-295.	1.9	53
126	Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues. Nature Biomedical Engineering, 2022, 6, 449-462.	11.6	52

#	Article	IF	Citations
127	Stress development during drying of calcium carbonate suspensions containing carboxymethylcellulose and latex particles. Journal of Colloid and Interface Science, 2004, 272, 1-9.	5 . O	51
128	Light-Regulated Electrostatic Interactions in Colloidal Suspensions. Journal of the American Chemical Society, 2005, 127, 14574-14575.	6.6	49
129	Rheological Behavior of Fugitive Organic Inks for Direct-Write Assembly. Applied Rheology, 2007, 17, 10112-1-10112-8.	3.5	49
130	Structure of Colloidal Gels during Microchannel Flow. Langmuir, 2008, 24, 7628-7634.	1.6	48
131	Stretchable Optomechanical Fiber Sensors for Pressure Determination in Compressive Medical Textiles. Advanced Healthcare Materials, 2018, 7, e1800293.	3.9	47
132	Soft Robotic Fingers with Embedded Ionogel Sensors and Discrete Actuation Modes for Somatosensitive Manipulation. , 2019, , .		47
133	Programming Cellular Alignment in Engineered Cardiac Tissue via Bioprinting Anisotropic Organ Building Blocks. Advanced Materials, 2022, 34, e2200217.	11.1	46
134	Electrostatically Tuned Interactions in Silica Microsphereâ^Polystyrene Nanoparticle Mixtures. Langmuir, 2005, 21, 8576-8579.	1.6	45
135	Reconfigurable assemblies of Janus rods in AC electric fields. Soft Matter, 2014, 10, 1320-1324.	1.2	45
136	3D printed structures for modeling the Young's modulus of bamboo parenchyma. Acta Biomaterialia, 2018, 68, 90-98.	4.1	45
137	Interparticle Interactions and Direct Imaging of Colloidal Phases Assembled from Microsphereâ^'Nanoparticle Mixtures. Langmuir, 2005, 21, 9978-9989.	1.6	44
138	Architected Multimaterial Lattices with Thermally Programmable Mechanical Response. Advanced Functional Materials, 2022, 32, 2105128.	7.8	44
139	A Selfâ€Aligned Strategy for Printed Electronics: Exploiting Capillary Flow on Microstructured Plastic Surfaces. Advanced Electronic Materials, 2015, 1, 1500137.	2.6	43
140	Observation of Poly{Vinyl Butyral}-Dibutyl Phthalate Binder Capillary Migration. Journal of the American Ceramic Society, 1989, 72, 1087-1090.	1.9	42
141	Direct Laser Writing of Photoresponsive Colloids for Microscale Patterning of 3D Porous Structures. Advanced Materials, 2009, 21, 66-70.	11.1	42
142	Direct-write assembly of microperiodic planar and spanning ITO microelectrodes. Chemical Communications, 2010, 46, 7118.	2.2	42
143	Quantitative Measurement of Nanoparticle Halo Formation around Colloidal Microspheres in Binary Mixtures. Langmuir, 2008, 24, 6504-6508.	1.6	41
144	Highâ€Operatingâ€Temperature Direct Ink Writing of Mesoscale Eutectic Architectures. Advanced Materials, 2017, 29, 1604778.	11,1	41

#	Article	IF	CITATIONS
145	Load partitioning in Al2O3–Al composites with three-dimensional periodic architecture. Acta Materialia, 2009, 57, 2362-2375.	3.8	40
146	High-Resolution, High-Aspect Ratio Conductive Wires Embedded in Plastic Substrates. ACS Applied Materials & Substrates, 2015, 7, 1841-1847.	4.0	39
147	Rheological, Structural, and Stress Evolution of Aqueous Al2O3:Latex Tape-Cast Layers. Journal of the American Ceramic Society, 2002, 85, 2409-2416.	1.9	37
148	Structural Evolution of Colloidal Crystals with Increasing Ionic Strength. Langmuir, 2004, 20, 7045-7052.	1.6	37
149	Comb Polymer Architecture, Ionic Strength, and Particle Size Effects on the BaTiO ₃ Suspension Stability. Journal of the American Ceramic Society, 2009, 92, S42.	1.9	37
150	Structural and Property Evolution of Aqueousâ€Based Lead Zirconate Titanate Tapeâ€Cast Layers. Journal of the American Ceramic Society, 2001, 84, 2495-2500.	1.9	36
151	Soluble organic additive effects on stress development during drying of calcium carbonate suspensions. Journal of Colloid and Interface Science, 2005, 290, 134-144.	5.0	36
152	Fabricating 3D Structures by Combining 2D Printing and Relaxation of Strain. Advanced Materials Technologies, 2019, 4, 1800299.	3.0	36
153	Directâ€Write Fabrication of Zinc Oxide Varistors. Journal of the American Ceramic Society, 2002, 85, 123-128.	1.9	34
154	Microstructure and Mechanical Properties of Reticulated Titanium Scrolls. Advanced Engineering Materials, 2011, 13, 1122-1127.	1.6	34
155	3D Printing Soft Materials: What Is Possible?. Soft Robotics, 2015, 2, 3-6.	4.6	34
156	Hierarchically Porous Ceramics via Direct Writing of Binary Colloidal Gel Foams. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8976-8984.	4.0	34
157	Biomimetic and Biologically Compliant Soft Architectures via 3D and 4D Assembly Methods: A Perspective. Advanced Materials, 2022, 34, e2108391.	11.1	34
158	Diffusivities of Dialkyl Phthalates in Plasticized Poly(vinyl butyral): Impact on Binder Thermolysis. Journal of the American Ceramic Society, 1990, 73, 2702-2707.	1.9	33
159	Effects of Ammonium Chloride on the Rheological Properties and Sedimentation Behavior of Aqueous Silica Suspensions. Journal of the American Ceramic Society, 2000, 83, 266-272.	1.9	33
160	Direct Flow Visualization of Colloidal Gels in Microfluidic Channels. Langmuir, 2007, 23, 8726-8731.	1.6	33
161	Printed, Selfâ€Aligned Sideâ€Gate Organic Transistors with a Subâ€5 µm Gate–Channel Distance on Imprinted Plastic Substrates. Advanced Electronic Materials, 2016, 2, 1600293.	2.6	33
162	All-Printed, Self-Aligned Carbon Nanotube Thin-Film Transistors on Imprinted Plastic Substrates. ACS Applied Materials & Distraction (2018), 10, 15926-15932.	4.0	33

#	Article	IF	CITATIONS
163	Phase Behavior and 3D Structure of Strongly Attractive Microsphereâ [^] Nanoparticle Mixtures. Langmuir, 2005, 21, 11040-11047.	1.6	32
164	Scaffold design and fabrication. , 2008, , 403-454.		32
165	Evaporative lithographic patterning of binary colloidal films. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 5157-5165.	1.6	32
166	Planar and Three-Dimensional Printing of Conductive Inks. Journal of Visualized Experiments, 2011, , .	0.2	32
167	Programming Mechanical and Physicochemical Properties of 3D Hydrogel Cellular Microcultures via Direct Ink Writing. Advanced Healthcare Materials, 2016, 5, 1025-1039.	3.9	32
168	Polymer Effects on the Chemorheological and Drying Behavior of Alumina–Poly(vinyl alcohol) Gelcasting Suspensions. Journal of the American Ceramic Society, 2000, 83, 1957-1963.	1.9	31
169	3Dâ€printed spherical dipole antenna integrated on small RF node. Electronics Letters, 2015, 51, 661-662.	0.5	31
170	Biomanufacturing human tissues via organ building blocks. Cell Stem Cell, 2022, 29, 667-677.	5.2	31
171	Voltage-controlled morphing of dielectric elastomer circular sheets into conical surfaces. Extreme Mechanics Letters, 2019, 30, 100504.	2.0	30
172	Amphiphilic silver particles for conductive inks with controlled wetting behavior. Materials Chemistry and Physics, 2014, 148, 686-691.	2.0	29
173	Cationic Comb Polymer Superdispersants for Colloidal Silica Suspensions. Langmuir, 2009, 25, 6787-6792.	1.6	28
174	Comparison of Spherical Antennas Fabricated via Conformal Printing: Helix, Meanderline, and Hybrid Designs. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 1425-1428.	2.4	28
175	Surface-barrier effects in grain-alignedHgBa2CuO4+δ,HgBa2CaCu2O6+δ, andHgBa2Ca2Cu3O8+δcompounds. Physical Review B, 1995, 52, R3852-R3855.	1.1	27
176	3D Printing: 3Dâ€Printing of Lightweight Cellular Composites (Adv. Mater. 34/2014). Advanced Materials, 2014, 26, 6043-6043.	11,1	27
177	3D polymer objects with electronic components interconnected <i>via</i> conformally printed electrodes. Nanoscale, 2017, 9, 14798-14803.	2.8	27
178	Bioprinting: 3D Bioprinting of Vascularized, Heterogeneous Cell‣aden Tissue Constructs (Adv. Mater.) Tj ETQqC)	/Qverlock 10
179	Wettability Contrast Gravure Printing. Advanced Materials, 2015, 27, 7420-7425.	11.1	26
180	A micromechanical-based model of stimulus responsive liquid crystal elastomers. International Journal of Solids and Structures, 2021, 219-220, 92-105.	1.3	26

#	Article	IF	CITATIONS
181	Structure and dynamics of biphasic colloidal mixtures. Physical Review E, 2008, 77, 060403.	0.8	25
182	Programmed shape-morphing into complex target shapes using architected dielectric elastomer actuators. Science Advances, 2022, 8, .	4.7	25
183	Competitive Adsorption Phenomena in Nonaqueous Tape Casting Suspensions. Journal of the American Ceramic Society, 2001, 84, 2501-2506.	1.9	24
184	Superconducting properties of grain-alignedHgBa2CuO4+x. Physical Review B, 1993, 48, 7739-7741.	1.1	23
185	Computer Simulations of Binder Removal from 2-D and 3-D Model Particulate Bodies. Journal of the American Ceramic Society, 1996, 79, 1377-1388.	1.9	23
186	Nonlinear Elasticity and Yielding of Nanoparticle Glasses. Langmuir, 2006, 22, 2441-2443.	1.6	23
187	The role of ceramic and glass science research in meeting societal challenges: Report from an <scp>NSF</scp> â€sponsored workshop. Journal of the American Ceramic Society, 2017, 100, 1777-1803.	1.9	23
188	Microstructure-Property Relationships in Macro-Defect-Free Cement. MRS Bulletin, 1993, 18, 72-77.	1.7	22
189	Mechanics of biomimetic 4D printed structures. Soft Matter, 2018, 14, 8771-8779.	1.2	22
190	Size Ratio Effects on Interparticle Interactions and Phase Behavior of Microsphereâ^Nanoparticle Mixtures. Langmuir, 2008, 24, 11399-11405.	1.6	21
191	Anisotropic Colloidal Templating of 3D Ceramic, Semiconducting, Metallic, and Polymeric Architectures. Advanced Materials, 2014, 26, 1740-1745.	11.1	20
192	Direct Observation of Preceramic and Organic Binder Decomposition in 2-D Model Microstructures. Journal of the American Ceramic Society, 1994, 77, 1839-1845.	1.9	19
193	Polymer Dielectrics for 3Dâ€Printed RF Devices in the <i>K</i> _a Band. Advanced Materials Technologies, 2016, 1, 1600027.	3.0	19
194	Multimaterial Multinozzle Adaptive 3D Printing of Soft Materials. Advanced Materials Technologies, 2022, 7, .	3.0	19
195	Engineered flux-pinning centers in Bi2Sr2CaCu2Ox and TIBa2Ca2Cu3Ox superconductors. Journal of Electronic Materials, 1995, 24, 1961-1966.	1.0	18
196	Phase Behavior and Rheological Properties of Polyamine-Rich Complexes for Direct-Write Assembly. Langmuir, 2007, 23, 12752-12759.	1.6	18
197	Microstructure and Elastic Properties of Colloidal Gel Foams. Langmuir, 2017, 33, 6869-6877.	1.6	18
198	Phase Behavior, 3-D Structure, and Rheology of Colloidal Microsphere-Nanoparticle Suspensions. Journal of the American Ceramic Society, 2006, 89, 1840-1846.	1.9	17

#	Article	IF	Citations
199	Binder Distribution in Macro-Defect-Free Cements: Relation between Percolative Properties and Moisture Absorption Kinetics. Journal of the American Ceramic Society, 1994, 77, 711-716.	1.9	16
200	Effect of ceramic preform geometry on load partitioning in Al2O3–Al composites with three-dimensional periodic architecture. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 526, 190-196.	2.6	15
201	Encapsulated Solvents for Carbon Dioxide Capture. Energy Procedia, 2013, 37, 219-224.	1.8	15
202	Photoswitchable Covalent Adaptive Networks Based on Thiol–Ene Elastomers. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 4552-4561.	4.0	15
203	Properties and chemical stability of hotâ€rolled Ag(7 at. % Cu)â€sheathed Bi2Sr2Ca0.64Cu1.64Oxpowderâ€inâ€tube tapes. Journal of Applied Physics, 1995, 78, 4596-4607.	1.1	14
204	In Vitro Human Tissues via Multi-material 3-D Bioprinting. ATLA Alternatives To Laboratory Animals, 2018, 46, 209-215.	0.7	14
205	Computational design and optimization of a biomimetic self-healing/cooling composite material., 2007, 6526, 323.		13
206	Self-aligned capillarity-assisted printing of top-gate thin-film transistors on plastic. Flexible and Printed Electronics, 2018, 3, 035004.	1.5	13
207	Rheological Property Evolution in Concentrated Cementâ€Polyelectrolyte Suspensions. Journal of the American Ceramic Society, 2002, 85, 2989-2994.	1.9	12
208	Structural Evolution of Colloidal Gels During Constricted Microchannel Flow. Langmuir, 2010, 26, 6102-6107.	1.6	12
209	Soft Robotics: Soft Somatosensitive Actuators via Embedded 3D Printing (Adv. Mater. 15/2018). Advanced Materials, 2018, 30, 1870106.	11.1	12
210	Kidney organoids: a pioneering model for kidney diseases. Translational Research, 2022, 250, 1-17.	2.2	12
211	Synthesis and Properties of CaAl2O4-Coated Al2O3 Microcomposite Powders. Journal of the American Ceramic Society, 1995, 78, 2881-2888.	1.9	11
212	Structural evolution of cuboidal granular media. Soft Matter, 2012, 8, 4795.	1.2	11
213	Effect of luminal flow on doming of mpkCCD cells in a 3D perfusable kidney cortical collecting duct model. American Journal of Physiology - Cell Physiology, 2020, 319, C136-C147.	2.1	11
214	Platinumâ€enhanced densification of grainâ€aligned YBa2Cu3O7â^'xfilms. Applied Physics Letters, 1994, 64, 103-105.	1.5	10
215	3D Printing: Microfluidic Printheads for Multimaterial 3D Printing of Viscoelastic Inks (Adv. Mater.) Tj ETQq1 1 0.	784314 r 11.1	gBT /Overlock
216	Inkjet Printing: Highâ€Throughput Printing via Microvascular Multinozzle Arrays (Adv. Mater. 1/2013). Advanced Materials, 2013, 25, 2-2.	11.1	8

#	Article	IF	CITATIONS
217	The Effect of Polymers on Ceramic Suspension Rheology and Green Component Properties. Materials Research Society Symposia Proceedings, 1992, 289, 117.	0.1	7
218	Three-Dimensional Periodic Structures. , 2006, , 87-100.		7
219	Printing Microvascular Networks: Omnidirectional Printing of 3D Microvascular Networks (Adv.) Tj ETQq1 1 0.784	314 rgBT 11.1	/Qverlock 1
220	Platinum enhanced textured growth of grainâ€aligned YBa2Cu3O7â^'xthick films. Journal of Applied Physics, 1994, 75, 5218-5226.	1,1	6
221	Genotyping by Alkaline Dehybridization Using Graphically Encoded Particles. Chemistry - A European Journal, 2011, 17, 2867-2873.	1.7	6
222	Visualization and simulation of the transfer process of indexâ€matched silica microparticle inks for gravure printing. AICHE Journal, 2017, 63, 1419-1429.	1.8	5
223	Partial melt processing of magnetically-aligned YBa/sub 2/Cu/sub 3/O/sub 7- delta / thick films. IEEE Transactions on Applied Superconductivity, 1993, 3, 1702-1705.	1.1	4
224	Transport properties of magnetic field/liquid assisted textured YBa2Cu3O7â^'x thick films. Applied Physics Letters, 1995, 67, 3028-3030.	1.5	4
225	Cellular Microcultures: Programming Mechanical and Physicochemical Properties of 3D Hydrogel Cellular Microcultures via Direct Ink Writing (Adv. Healthcare Mater. 9/2016). Advanced Healthcare Materials, 2016, 5, 990-990.	3.9	4
226	Effects of Bi and Bi/sub 2/0/sub 3/ additions on the microstructure and superconducting properties of powder-in-tube BSCCO (2212) tapes. IEEE Transactions on Applied Superconductivity, 1995, 5, 1860-1863.	1.1	3
227	Cement Composition Effects on the Rheological Property Evolution in Concentrated Cement–Polyelectrolyte Suspensions. Journal of the American Ceramic Society, 2004, 87, 1836-1842.	1.9	3
228	Design of spherical meanderline antennas. , 2011, , .		3
229	Photonic Sensing: Stretchable Optomechanical Fiber Sensors for Pressure Determination in Compressive Medical Textiles (Adv. Healthcare Mater. 15/2018). Advanced Healthcare Materials, 2018, 7, 1870061.	3.9	3
230	Mass Transfer Processes During Multicomponent Bender Thermolysis. Materials Research Society Symposia Proceedings, 1991, 249, 363.	0.1	2
231	The role of platinum in partial melt textured growth of bulk YBCO. IEEE Transactions on Applied Superconductivity, 1995, 5, 1560-1563.	1.1	2
232	Bulk texture and transport properties of magnetic field/liquid assisted textured YBa/sub 2/Cu/sub 3/O/sub 7-x/ tape-cast films. IEEE Transactions on Applied Superconductivity, 1999, 9, 1463-1466.	1.1	2
233	Materials for Freeform Fabrication of GHz Tunable Dielectric Photonic Crystals. Materials Research Society Symposia Proceedings, 2002, 758, 161.	0.1	2
234	Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs., 2010,, 38-46.		2

#	Article	IF	CITATIONS
235	Additive Micro-Manufacturing of Designer Materials. , 2014, , 13-24.		2
236	"Binder Distribution in Macro-Defect-Free Cements: Relation between Percolative Properties and Moisture Absorption Kinetics". Journal of the American Ceramic Society, 1994, 77, 1407-1407.	1.9	1
237	Transport properties of magnetic field/liquid assisted textured YBa/sub 2/Cu/sub 3/O/sub 7-x/ tape-cast films. IEEE Transactions on Applied Superconductivity, 1997, 7, 1440-1442.	1.1	1
238	3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures. Advanced Functional Materials, 2011, 21, 46-46.	7.8	1
239	Topology Optimized Architectures with Programmable Poisson's Ratio over Large Deformations. , 2015, 27, 5523.		1
240	Materials@Illinois. Advanced Materials, 2010, 22, 1037-1037.	11.1	0
241	Colloidal Suspensions: Biphasic Electrode Suspensions for Li-Ion Semi-solid Flow Cells with High Energy Density, Fast Charge Transport, and Low-Dissipation Flow (Adv. Energy Mater. 15/2015). Advanced Energy Materials, 2015, 5, n/a-n/a.	10.2	0
242	Generation and Initial Characterization of 3D Cortical Collecting Ducts (CCDs)â€onâ€e hip. FASEB Journal, 2019, 33, 862.31.	0.2	0