Fumio Hanaoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2528798/publications.pdf Version: 2024-02-01

Ευμίο Ηλυλοκλ

#	Article	IF	CITATIONS
1	The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase Ε. Nature, 1999, 399, 700-704.	27.8	1,248
2	UV-Induced Ubiquitylation of XPC Protein Mediated by UV-DDB-Ubiquitin Ligase Complex. Cell, 2005, 121, 387-400.	28.9	517
3	The Molecular Basis of CRL4DDB2/CSA Ubiquitin Ligase Architecture, Targeting, and Activation. Cell, 2011, 147, 1024-1039.	28.9	372
4	Low fidelity DNA synthesis by human DNA polymerase-Ε. Nature, 2000, 404, 1011-1013.	27.8	356
5	Structure and mechanism of human DNA polymerase Î. Nature, 2010, 465, 1044-1048.	27.8	300
6	Centrosome Protein Centrin 2/Caltractin 1 Is Part of the Xeroderma Pigmentosum Group C Complex That Initiates Global Genome Nucleotide Excision Repair. Journal of Biological Chemistry, 2001, 276, 18665-18672.	3.4	290
7	Error-prone bypass of certain DNA lesions by the human DNA polymerase κ. Genes and Development, 2000, 14, 1589-1594.	5.9	250
8	Interaction of hREV1 with three human Y-family DNA polymerases. Genes To Cells, 2004, 9, 523-531.	1.2	244
9	Interaction of hHR23 with S5a. Journal of Biological Chemistry, 1999, 274, 28019-28025.	3.4	243
10	Efficient Translesion Replication Past Oxaliplatin and Cisplatin GpG Adducts by Human DNA Polymerase Î∙â€. Biochemistry, 2000, 39, 4575-4580.	2.5	209
11	Misinsertion and bypass of thymine–thymine dimers by human DNA polymerase ι. EMBO Journal, 2000, 19, 5259-5266.	7.8	197
12	129-derived Strains of Mice Are Deficient in DNA Polymerase Î ¹ and Have Normal Immunoglobulin Hypermutation. Journal of Experimental Medicine, 2003, 198, 635-643.	8.5	169
13	Molecular analysis of mutations in DNA polymerase η in xeroderma pigmentosum-variant patients. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 815-820.	7.1	165
14	3-Methyladenine-DNA Glycosylase (MPG Protein) Interacts with Human RAD23 Proteins. Journal of Biological Chemistry, 2000, 275, 28433-28438.	3.4	109
15	UV-B Radiation Induces Epithelial Tumors in Mice Lacking DNA Polymerase η and Mesenchymal Tumors in Mice Deficient for DNA Polymerase ι. Molecular and Cellular Biology, 2006, 26, 7696-7706.	2.3	102
16	Developmental Defects and Male Sterility in Mice Lacking the Ubiquitin-Like DNA Repair Gene mHR23B. Molecular and Cellular Biology, 2002, 22, 1233-1245.	2.3	99
17	Systematic identification, classification, and characterization of the open reading frames which encode novel helicase-related proteins inSaccharomyces cerevisiae by gene disruption and Northern analysis. , 1999, 15, 219-253.		90
18	Cloning, Comparative Mapping, and RNA Expression of the Mouse Homologues of theSaccharomyces cerevisiaeNucleotide Excision Repair GeneRAD23. Genomics, 1996, 31, 20-27.	2.9	66

ΓΜΙΟ ΗΑΝΑΟΚΑ

#	Article	IF	CITATIONS
19	Relative levels of the two mammalian Rad23 homologs determine composition and stability of the xeroderma pigmentosum group C protein complex. DNA Repair, 2004, 3, 1285-1295.	2.8	63
20	Genomic structure, chromosomal localization and identification of mutations in the xeroderma pigmentosum variant (XPV) gene. Oncogene, 2000, 19, 4721-4728.	5.9	58
21	Sequence context-dependent replication of DNA templates containing UV-induced lesions by human DNA polymerase Î ¹ . DNA Repair, 2003, 2, 991-1006.	2.8	54
22	Interaction with DNA polymerase \hat{I} is required for nuclear accumulation of REV1 and suppression of spontaneous mutations in human cells. DNA Repair, 2009, 8, 585-599.	2.8	53
23	Atomic force microscopy sees nucleosome positioning and histone H1-induced compaction in reconstituted chromatin. FEBS Letters, 1999, 452, 267-271.	2.8	47
24	Comparison of Incorporation and Extension of Nucleotides in vitro opposite 8-Hydroxyguanine (7,8-Dihydro-8-oxoguanine) in Hot Spots of the c-Ha-ras Gene. Japanese Journal of Cancer Research, 1995, 86, 270-276.	1.7	31
25	SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair. Scientific Reports, 2015, 5, 10984.	3.3	31
26	Chemical synthesis and translesion replication of a cis-syn cyclobutane thymine-uracil dimer. Nucleic Acids Research, 2004, 32, 1738-1745.	14.5	30
27	Expression Profiles of Transcripts from 126 Open Reading Frames in the Entire Chromosome VI ofSaccharomyces cerevisiae by Systematic Northern Analyses. , 1997, 13, 1275-1290.		26
28	Two mammalian homologs of yeast Rad23, HR23A and HR23B, as multifunctional proteins. Gene, 2017, 597, 1-9.	2.2	26
29	Eukaryotic DNA Polymerases α, β and ε Incorporate Guanine Opposite 2,2,4â€Triaminoâ€5(2 <i>H</i>)â€oxazolo ChemBioChem, 2009, 10, 2613-2616.	one 2.6	25
30	Novel function of HATs and HDACs in homologous recombination through acetylation of human RAD52 at double-strand break sites. PLoS Genetics, 2018, 14, e1007277.	3.5	25
31	DNA polymerases Î∙ and κ are responsible for error-free translesion DNA synthesis activity over a cis–syn thymine dimer in Xenopus laevis oocyte extracts. DNA Repair, 2005, 4, 1252-1269.	2.8	24
32	Cyclobutane thymine dimers in arasproto-oncogene hot spot activate the gene by point mutation. Nucleic Acids Research, 1993, 21, 2355-2361.	14.5	22
33	A DNA oligomer containing 2,2,4-triamino-5(2H)-oxazolone is incised by human NEIL1 and NTH1. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 734, 73-77.	1.0	20
34	UV-induced mutations in epidermal cells of mice defective in DNA polymerase η and/or Î ¹ . DNA Repair, 2015, 29, 139-146.	2.8	19
35	Molecular cloning of the cDNA for the catalytic subunit of plant DNA polymerase α and its cell-cycle dependent expression. Genes To Cells, 1997, 2, 695-709.	1.2	17
36	Translesion synthesis by human DNA polymerase across oxidative products of guanine. Nucleic Acids Symposium Series, 2004, 48, 171-172.	0.3	17

Ευμιο Ηαναοκα

#	Article	IF	CITATIONS
37	<i>Schizosaccharomyces pombe</i> Ddb1 Recruits Substrate-Specific Adaptor Proteins through a Novel Protein Motif, the DDB-Box. Molecular and Cellular Biology, 2008, 28, 6746-6756.	2.3	17
38	The Human RNA Helicase A (DDX9) Gene Maps to the Prostate Cancer Susceptibility Locus at Chromosome Band 1q25 and Its Pseudogene (DDX9P) to 13q22, Respectively. Somatic Cell and Molecular Genetics, 1999, 25, 33-39.	0.7	16
39	Stalled Poll· at its cognate substrate initiates an alternative translesion synthesis pathway via interaction with REV1. Genes To Cells, 2012, 17, 98-108.	1.2	16
40	Two budding yeast RAD4 homologs in fission yeast play different roles in the repair of UV-induced DNA damage. DNA Repair, 2002, 1, 833-845.	2.8	12
41	The Protein Level of Rev1, a TLS Polymerase in Fission Yeast, Is Strictly Regulated during the Cell Cycle and after DNA Damage. PLoS ONE, 2015, 10, e0130000.	2.5	11
42	E2F regulates growth-dependent transcription of genes encoding both catalytic and regulatory subunits of mouse primase. Genes To Cells, 2001, 6, 57-70.	1.2	8
43	SOS polymerases. Nature, 2001, 409, 33-34.	27.8	8
44	Cloning and Characterization of Novel Gene, DCRR1, Expressed from Down's Syndrome Critical Region of Human Chromosome 21q22.2. DNA Sequence, 1997, 7, 153-164.	0.7	7
45	Analysis of a 36·2 kb DNA sequence including the right telomere of chromosome VI fromSaccharomyces cerevisiae. Yeast, 1996, 12, 149-167.	1.7	6
46	Hypersensitivity of mouse embryonic fibroblast cells defective for DNA polymerases η, ι and κ to various genotoxic compounds: Its potential for application in chemical genotoxic screening. DNA Repair, 2018, 61, 76-85.	2.8	5
47	Fifteen open reading frames in a 30·8 kb region of the right arm of chromosome VI fromSaccharomyces cerevisiae. Yeast, 1996, 12, 177-190.	1.7	4
48	Temperature-sensitive Mutation of DNA Polymerase .ALPHA. Induces Growth-suppressive Phenotypes Involving Retinoblastoma Protein and Cyclin D1 Cell Structure and Function, 1995, 20, 285-291.	1.1	4
49	Translesion DNA Synthesis and Damage Tolerance Pathways. , 2016, , 249-304.		3
50	Identification of the Coding Region of Saccharomyces cerevisiae Chromosome VI Using the Computer Program GenMark. DNA Research, 1995, 2, 247-253.	3.4	2
51	Molecular biology of Fanconi anaemia—an old problem, a new insight. BioEssays, 2002, 24, 439-448.	2.5	1
52	Resolution and Characterization of Polymorphic DNA by SSCP and Chemical Cleavage Methodologies. Journal of Radiation Research, 0, , .	1.6	0
53	Trapping DNA Replication Origins from the Human Genome. Genes, 2013, 4, 198-225.	2.4	0