
MarÃ-a Luisa Rojas-Cervantes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/252876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon, 1995, 33, 1585-1592.	10.3	984
2	Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Applied Catalysis B: Environmental, 2007, 71, 44-56.	20.2	275
3	Preparation and characterization of LaMn1\$minus;xCUxO3+\$lambda; perovskite oxides. Journal of Catalysis, 1990, 124, 41-51.	6.2	100
4	Immobilisation of fructosyltransferase from Aspergillus aculeatus on epoxy-activated Sepabeads EC for the synthesis of fructo-oligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 2005, 35, 19-27.	1.8	97
5	Characterization of Al2O3-ZrO2 mixed oxide catalytic supports prepared by the sol-gel method. Microporous and Mesoporous Materials, 1998, 20, 293-306.	4.4	87
6	Efficient removal of paracetamol using LaCu1â^'xMxO3 (M = Mn, Ti) perovskites as heterogeneous Fenton-like catalysts. Chemical Engineering Journal, 2016, 304, 408-418.	12.7	69
7	Immobilization of Dextransucrase from Leuconostoc mesenteroides NRRL B-512F on Eupergit C Supports. Biotechnology Progress, 2004, 20, 1414-1420.	2.6	56
8	Limonene oxidation over V2O5/TiO2 catalysts. Catalysis Today, 2006, 118, 307-314.	4.4	55
9	Dehydrogenation of methanol to methyl formate over copper-containing perovskite-type oxides. Applied Catalysis, 1991, 68, 217-228.	0.8	48
10	Catalysis by basic carbons: Preparation of dihydropyridines. Applied Surface Science, 2006, 252, 6080-6083.	6.1	43
11	Perovskites as Catalysts in Advanced Oxidation Processes for Wastewater Treatment. Catalysts, 2019, 9, 230.	3.5	37
12	Titania aerogels. Microporous and Mesoporous Materials, 2006, 88, 205-213.	4.4	33
13	ZrO2 obtained by the sol-gel method: influence of synthesis parameters on physical and structural characteristics. Journal of Materials Science, 1994, 29, 3743-3748.	3.7	32
14	Characterization of basic sites of alkaline carbons by Knoevenagel condensation. Carbon, 1993, 31, 1231-1236.	10.3	31
15	Preparation of charcoal from cherry stones. Applied Surface Science, 2006, 252, 5957-5960.	6.1	31
16	Production of bioethanol from carrot discards. Bioresource Technology, 2012, 123, 727-732.	9.6	31
17	On the textural and crystalline properties of Fe-carbon xerogels. Application as Fenton-like catalysts in the oxidation of paracetamol by H2O2. Microporous and Mesoporous Materials, 2017, 237, 282-293.	4.4	31
18	Sonocatalysis and Basic Clays. Michael Addition Between Imidazole and Ethyl Acrylate. Catalysis Letters. 2002, 84, 201-204.	2.6	30

#	Article	IF	CITATIONS
19	Basic metal–carbons catalysts prepared by sol–gel method. Carbon, 2004, 42, 1575-1582.	10.3	29
20	Title is missing!. Journal of Materials Science, 2000, 35, 3279-3287.	3.7	28
21	Characterization and application of a sterol esterase immobilized on polyacrylate epoxy-activated carriers (Dilbeadsâ,,¢). Catalysis Communications, 2008, 9, 539-545.	3.3	26
22	Some strategies to lower the production cost of carbon gels. Journal of Materials Science, 2015, 50, 1017-1040.	3.7	26
23	Ultrasound enhanced reactions involving activated carbons as catalysts: synthesis of α,β-unsaturated nitriles. Carbon, 1999, 37, 213-219.	10.3	25
24	Hybrid materials based on vanadium pentoxide intercalation complexes. Colloid and Polymer Science, 2001, 279, 990-1004.	2.1	24
25	Carbonization and demineralization of coals: A study by means of FT-IR spectroscopy. Bulletin of Materials Science, 2003, 26, 721-732.	1.7	24
26	Hybrid TiO ₂ â^'SiMgO _{<i>X</i>} Composite for Combined Chemisorption and Photocatalytic Elimination of Gaseous H ₂ S. Industrial & Engineering Chemistry Research, 2010, 49, 6685-6690.	3.7	23
27	Comparison of the quality attributes of carrot juice pasteurized by ohmic heating and conventional heat treatment. LWT - Food Science and Technology, 2021, 145, 111255.	5.2	22
28	Selective production of methanol from syngas over LaTi1â^'xCuxO3 mixed oxides. Catalysis Letters, 1991, 8, 335-344.	2.6	20
29	Ultrasound-activated Knoevenagel condensation of malononitrile with carbonylic compounds catalysed by alkaline-doped saponites. Journal of Chemical Technology and Biotechnology, 2005, 80, 234-238.	3.2	20
30	Fe-Cu Doped Multiwalled Carbon Nanotubes for Fenton-like Degradation of Paracetamol Under Mild Conditions. Nanomaterials, 2020, 10, 749.	4.1	20
31	Interaction of triton X-100 on silica: A relationship between surface characteristics and adsorption isotherms. Journal of Chemical Technology and Biotechnology, 1995, 63, 249-256.	3.2	18
32	N-alkylation of imidazole by alkaline carbons. Microporous and Mesoporous Materials, 2004, 67, 87-94.	4.4	18
33	Physico-chemical properties of low-rank coals. Powder Technology, 2004, 148, 38-42.	4.2	18
34	Synthesis and characterization of LaTi1â^'xCuxO3 compounds. Journal of Solid State Chemistry, 1990, 89, 299-307.	2.9	17
35	Silica/C composites prepared by the sol–gel method. Influence of the synthesis parameters on textural characteristics. Microporous and Mesoporous Materials, 2004, 74, 111-119.	4.4	17
36	Silica-based nanocatalysts in the C C and C-heteroatom bond forming cascade reactions for the synthesis of biologically active heterocyclic scaffolds. Catalysis Today, 2017, 285, 65-88.	4.4	17

#	Article	IF	CITATIONS
37	Preparation of mesoporous TiO2 by the sol-gel method assisted by surfactants. Journal of Materials Science, 2006, 41, 2457-2464.	3.7	16
38	Acid clay minerals as eco-friendly and cheap catalysts for the synthesis of β-amino ketones by Mannich reaction. Applied Clay Science, 2017, 143, 250-257.	5.2	14
39	Alkaline-doped multiwall carbon nanotubes as efficient catalysts for the Knoevenagel condensation. Molecular Catalysis, 2017, 443, 101-109.	2.0	14
40	Alkaline carbons as base catalysts: Alkylation of imidazole with alkyl halides. Journal of Molecular Catalysis, 1993, 85, 253-264.	1.2	13
41	Preparation of V/ZrO2 catalysts by the sol-gel method: Physical and structural characterization. Journal of Materials Science, 1996, 31, 437-444.	3.7	12
42	Title is missing!. Journal of Materials Science, 2000, 35, 3269-3278.	3.7	11
43	Cesium-saponites as excellent environmental-friendly catalysts for the synthesis of N-alkyl pyrazoles. Applied Clay Science, 2011, 54, 125-131.	5.2	10
44	Selective N-propargylation of imidazole under microwave irradiation using some magnesium oxides as catalysts. Catalysis Letters, 1994, 25, 385-392.	2.6	9
45	Synthesis and characterisation of xTiO2·(1â^'x)SiO2–carbon composites. Carbon, 2003, 41, 79-86.	10.3	9
46	Surface and catalytic properties of acid metal–carbons prepared by the sol–gel method. Applied Surface Science, 2006, 252, 6075-6079.	6.1	9
47	Control of porosity and surface area in TiO2-Al2O3 mixed oxides supports by means of ammonium carbonate. Studies in Surface Science and Catalysis, 1995, 91, 411-420.	1.5	7
48	Microwave enhanced synthesis of N-propargyl derivatives of imidazole. Applied Surface Science, 2006, 252, 6067-6070.	6.1	7
49	Interaction of Molten Salts with a Semianthracite Char at 873 K. A Study by X-ray Diffraction. Energy & Fuels, 1998, 12, 289-297.	5.1	6
50	Basic zeolites as catalysts in the N-alkylation of imidazole: Activation by microwave irradiation. Microporous and Mesoporous Materials, 2009, 120, 115-121.	4.4	5
51	Sustainable fermentation processing of two revalorized agro-industrial discards: carrot and brewer's yeast. International Journal of Energy and Environmental Engineering, 2013, 4, 24.	2.5	5
52	Interaction of molten salts with a semianthracite char at 743-1173 K. Effects on chemical composition, textural properties, and reactivity in air. Fuel Processing Technology, 2005, 87, 45-51.	7.2	4
53	Porous Alkaline-Earth Doped Multiwall Carbon Nanotubes with Base Catalytic Properties. Catalysis Letters, 2019, 149, 2279-2290.	2.6	3
54	Demineralisation of semi-anthracite char with molten salts/HCl. Applied Surface Science, 2006, 252, 6005-6008.	6.1	2

#	Article	IF	CITATIONS
55	Molecular dynamics simulation of the adsorption of alkali metal cations on carbon nanotubes surfaces. Computational Condensed Matter, 2019, 18, e00357.	2.1	2
56	Rheological Properties of Different Graphene Nanomaterials in Biological Media. Materials, 2022, 15, 3593.	2.9	2
57	A study of hydrogenated carbon fibers by scanning electron microscopy and confocal laser scanning microscopy. Microscopy Research and Technique, 2009, 72, 447-453.	2.2	0
58	COMPORTAMIENTO REOLÓGICO DE SUSPENSIONES DE NANOTUBOS DE CARBONO CON APLICACIONES BIOMÉDICAS. , 0, , 16-27.		0
59	Amino-Functionalized Multiwall Carbon Nanotubes as Efficient Basic Catalysts for the Formation of Î ³ -Lactams: Synthesis of N-1-Heptenyl-2-pyrrolidinone. Nanomaterials, 2022, 12, 684.	4.1	0