Judit E Pongracz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2528011/publications.pdf

Version: 2024-02-01

218592 233338 2,077 62 26 45 citations g-index h-index papers 65 65 65 2749 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Preparation and Characterization of ACE2 Receptor Inhibitor-Loaded Chitosan Hydrogels for Nasal Formulation to Reduce the Risk of COVID-19 Viral Infection. ACS Omega, 2022, 7, 3240-3253.	1.6	7
2	Recent Advances in Influenza, HIV and SARS-CoV-2 Infection Prevention and Drug Treatmentâ€"The Need for Precision Medicine. Chemistry, 2022, 4, 216-258.	0.9	4
3	Wnt/ $\hat{\Gamma}^2$ -Catenin Signaling Regulates CXCR4 Expression and [68Ga] Pentixafor Internalization in Neuroendocrine Tumor Cells. Diagnostics, 2021, 11, 367.	1.3	5
4	Activated p53 in the anti-apoptotic milieu of tuberous sclerosis gene mutation induced diseases leads to cell death if thioredoxin reductase is inhibited. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 253-260.	2.2	2
5	KRAS and EGFR Mutations Differentially Alter ABC Drug Transporter Expression in Cisplatin-Resistant Non-Small Cell Lung Cancer. International Journal of Molecular Sciences, 2021, 22, 5384.	1.8	9
6	Normalization of Enzyme Expression and Activity Regulating Vitamin A Metabolism Increases RAR-Beta Expression and Reduces Cellular Migration and Proliferation in Diseases Caused by Tuberous Sclerosis Gene Mutations. Frontiers in Oncology, 2021, 11, 644592.	1.3	2
7	Physical Activity as a Preventive Lifestyle Intervention Acts Through Specific Exosomal miRNA Species—Evidence From Human Short- and Long-Term Pilot Studies. Frontiers in Physiology, 2021, 12, 658218.	1.3	12
8	Is an Immunosuppressive Microenvironment a Characteristic of Both Intra- and Extraparenchymal Central Nervous Tumors?. Pathophysiology, 2021, 28, 34-49.	1.0	2
9	Feasibility study of in vitro drug sensitivity assay of advanced non-small cell lung adenocarcinomas. BMJ Open Respiratory Research, 2020, 7, e000505.	1.2	1
10	Cisplatin treatment induced interleukin 6 and 8 production alters lung adenocarcinoma cell migration in an oncogenic mutation dependent manner. Respiratory Research, 2020, 21, 120.	1.4	17
11	Artificial Neural Network Correlation and Biostatistics Evaluation of Physiological and Molecular Parameters in Healthy Young Individuals Performing Regular Exercise. Frontiers in Physiology, 2019, 10, 1242.	1.3	3
12	Wnt signaling regulates trans-differentiation of stem cell like type 2 alveolar epithelial cells to type 1 epithelial cells. Respiratory Research, 2019, 20, 204.	1.4	39
13	"Beige―Cross Talk Between the Immune System and Metabolism. Frontiers in Endocrinology, 2019, 10, 369.	1.5	2
14	Transgenic Exosomes for Thymus Regeneration. Frontiers in Immunology, 2019, 10, 862.	2.2	31
15	Mitochondrial dysfunction is a key determinant of the rare disease lymphangioleiomyomatosis and provides a novel therapeutic target. Oncogene, 2019, 38, 3093-3101.	2.6	7
16	In vivo and in vitro investigation of anti-inflammatory and mucus-regulatory activities of a fixed combination of thyme and primula extracts. Pulmonary Pharmacology and Therapeutics, 2018, 51, 10-17.	1.1	14
17	Cigarette Smoke-Induced Pulmonary Inflammation Becomes Systemic by Circulating Extracellular Vesicles Containing Wnt5a and Inflammatory Cytokines. Frontiers in Immunology, 2018, 9, 1724.	2.2	32
18	Cell death and survival following manual and femtosecond laser-assisted capsulotomy in age-related cataract. International Journal of Ophthalmology, 2018, 11, 1440-1446.	0.5	1

#	Article	IF	Citations
19	Toxicology studies of primycin-sulphate using a three-dimensional (3D) in vitro human liver aggregate model. Toxicology Letters, 2017, 281, 44-52.	0.4	2
20	ABCB1 and ABCG2 drug transporters are differentially expressed in non-small cell lung cancers (NSCLC) and expression is modified by cisplatin treatment via altered Wnt signaling. Respiratory Research, 2017, 18, 52.	1.4	66
21	Immunosenescence and the Ageing Lung. , 2017, , 87-104.		2
22	PPARgamma Deficiency Counteracts Thymic Senescence. Frontiers in Immunology, 2017, 8, 1515.	2.2	17
23	WNT signaling – lung cancer is no exception. Respiratory Research, 2017, 18, 167.	1.4	80
24	The scaffold protein Tks4 is required for the differentiation of mesenchymal stromal cells (MSCs) into adipogenic and osteogenic lineages. Scientific Reports, 2016, 6, 34280.	1.6	20
25	Increased Wnt5a in squamous cell lung carcinoma inhibits endothelial cell motility. BMC Cancer, 2016, 16, 915.	1.1	14
26	Role of CD248 as a potential severity marker in idiopathic pulmonary fibrosis. BMC Pulmonary Medicine, 2016, 16, 51.	0.8	24
27	Wnt5a \hat{a} e" regulator of molecular events leading to inflammation and cancer in the lung. , 2015, , .		O
28	Comparative analysis of cisplatin treatment in < i>in vitro < /i> 3D lung microtissue and monolayer cell cultures. , 2015, , .		0
29	Active Wnt/beta-catenin signaling is required for embryonic thymic epithelial development and functionality ex vivo. Immunobiology, 2014, 219, 644-652.	0.8	20
30	Alteration in the Wnt microenvironment directly regulates molecular events leading to pulmonary senescence. Aging Cell, 2014, 13, 838-849.	3.0	37
31	Down-Regulation of Canonical and Up-Regulation of Non-Canonical Wnt Signalling in the Carcinogenic Process of Squamous Cell Lung Carcinoma. PLoS ONE, 2013, 8, e57393.	1.1	43
32	Wnt-4 Protects Thymic Epithelial Cells Against Dexamethasone-Induced Senescence. Rejuvenation Research, 2011, 14, 241-248.	0.9	46
33	Multiple suppression pathways of canonical Wnt signalling control thymic epithelial senescence. Mechanisms of Ageing and Development, 2011, 132, 249-256.	2.2	31
34	Characterisation of eGFP-transgenic BALB/c mouse strain established by lentiviral transgenesis. Transgenic Research, 2010, 19, 105-112.	1.3	19
35	Wnt4 and LAP2alpha as Pacemakers of Thymic Epithelial Senescence. PLoS ONE, 2010, 5, e10701.	1.1	58
36	Tissue engineering and biotechnology in general thoracic surgery. European Journal of Cardio-thoracic Surgery, 2010, 37, 1402-1410.	0.6	8

#	Article	IF	CITATIONS
37	Expression of the Somatostatin Receptor Subtype 4 in Intact and Inflamed Pulmonary Tissues. Journal of Histochemistry and Cytochemistry, 2009, 57, 1127-1137.	1.3	18
38	Retinoid receptorâ€activating ligands are produced within the mouse thymus during postnatal development. European Journal of Immunology, 2008, 38, 147-155.	1.6	28
39	Wnt signalling in lung development and diseases. Respiratory Research, 2006, 7, 15.	1.4	191
40	Establishment and functioning of intrathymic microenvironments. Immunological Reviews, 2006, 209, 10-27.	2.8	96
41	Overexpression of ICAT highlights a rolefor catenin-mediated canonical Wnt signalling in early T cell development. European Journal of Immunology, 2006, 36, 2376-2383.	1.6	54
42	Thymic epithelial cells provide Wnt signals to developing thymocytes. European Journal of Immunology, 2003, 33, 1949-1956.	1.6	82
43	Opposing effects of butyrate and bile acids on apoptosis of human colon adenoma cells: differential activation of PKC and MAP kinases. British Journal of Cancer, 2003, 88, 748-753.	2.9	46
44	Con A activates an Akt/PKB dependent survival mechanism to modulate TCR induced cell death in double positive thymocytes. Molecular Immunology, 2003, 39, 1013-1023.	1.0	30
45	Modeling TCR Signaling Complex Formation in Positive Selection. Journal of Immunology, 2003, 171, 2825-2831.	0.4	25
46	Induction of thymocyte positive selection does not convey immediate resistance to negative selection. Immunology, 2002, 105, 163-170.	2.0	5
47	Tracking the response of Xid B cells in vivo: TI-2 antigen induces migration and proliferation but Btk is essential for terminal differentiation. European Journal of Immunology, 2001, 31, 1340-1350.	1.6	40
48	Notch ligand-bearing thymic epithelial cells initiate and sustain Notch signaling in thymocytes independently of T cell receptor signaling. European Journal of Immunology, 2001, 31, 3349-3354.	1.6	73
49	Regulation of neutrophil apoptosis: a role for protein kinase C and phosphatidylinositol-3-kinase. Apoptosis: an International Journal on Programmed Cell Death, 2000, 5, 451-458.	2.2	79
50	Spontaneous Neutrophil Apoptosis Involves Caspase 3-mediated Activation of Protein Kinase C-δ. Journal of Biological Chemistry, 1999, 274, 37329-37334.	1.6	169
51	The Lipoxygenase Product 13-Hydroxyoctadecadienoic Acid (13-HODE) Is a Selective Inhibitor of Classical PKC Isoenzymes. Biochemical and Biophysical Research Communications, 1999, 256, 269-272.	1.0	9
52	Superoxide Production in Human Neutrophils: Evidence for Signal Redundancy and the Involvement of More Than One PKC Isoenzyme Class. Biochemical and Biophysical Research Communications, 1998, 247, 624-629.	1.0	43
53	Isoenzymes of protein kinase C: differential involvement in apoptosis and pathogenesis Journal of Clinical Pathology, 1997, 50, 124-131.	2.1	96
54	The Polyether Bistratene A Activates Protein Kinase Câ€"δ and Induces Growth Arrest in HL60 Cells. Biochemical and Biophysical Research Communications, 1996, 222, 802-808.	1.0	80

#	Article	IF	CITATIONS
55	CELL CYCLE AND PKC ISOENZYME ACTIVATION IN PROMYELOID U937 CELLS. Biochemical Society Transactions, 1996, 24, 515S-515S.	1.6	О
56	Doppa induces cell death but not differentiation of U937 cells: Evidence for the involvement of PKC- \hat{l}^2 l in the regulation of apoptosis. Leukemia Research, 1996, 20, 319-326.	0.4	22
57	Expression of protein kinase C isoenzymes in colorectal cancer tissue and their differential activation by different bile acids. International Journal of Cancer, 1995, 61, 35-39.	2.3	136
58	Changes in Protein Kinase C Isoenzyme Expression Associated with Apoptosis in U937 Myelomonocytic Cells. Experimental Cell Research, 1995, 218, 430-438.	1.2	50
59	The role of protein kinase C in myeloid cell apoptosis. Biochemical Society Transactions, 1994, 22, 593-597.	1.6	25
60	Dynamics of ¹²⁵ I-Labelled Horse Serum Albumin Presentation in vivo in Guinea Pigs. International Archives of Allergy and Immunology, 1991, 96, 285-288.	0.9	0
61	Antigen-Specific Lymphocyte Clone Elimination and Reappearance in Guinea Pigs Using ¹²⁵ 1-Labelled Horse Serum Albumin. International Archives of Allergy and Immunology, 1988, 87, 260-262.	0.9	0
62	Central Immune Senescence, Reversal Potentials. , 0, , .		3