Ngoc A Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2527933/publications.pdf

Version: 2024-02-01

45 papers 3,362 citations

279701 23 h-index 243529 44 g-index

45 all docs

45 docs citations

45 times ranked

3865 citing authors

#	Article	IF	CITATIONS
1	The use of elemental sulfur as an alternative feedstock for polymeric materials. Nature Chemistry, 2013, 5, 518-524.	6.6	1,046
2	New Infrared Transmitting Material via Inverse Vulcanization of Elemental Sulfur to Prepare High Refractive Index Polymers. Advanced Materials, 2014, 26, 3014-3018.	11.1	296
3	Dynamic Covalent Polymers via Inverse Vulcanization of Elemental Sulfur for Healable Infrared Optical Materials. ACS Macro Letters, 2015, 4, 862-866.	2.3	193
4	High Refractive Index Copolymers with Improved Thermomechanical Properties via the Inverse Vulcanization of Sulfur and 1,3,5-Triisopropenylbenzene. ACS Macro Letters, 2016, 5, 1152-1156.	2.3	150
5	Inverse vulcanization of elemental sulfur with 1,4-diphenylbutadiyne for cathode materials in Li–S batteries. RSC Advances, 2015, 5, 24718-24722.	1.7	149
6	A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites. Applied Materials Today, 2018, 12, 138-152.	2.3	145
7	Inverse vulcanization of elemental sulfur and styrene for polymeric cathodes in Liâ€5 batteries. Journal of Polymer Science Part A, 2017, 55, 107-116.	2.5	139
8	Softwood Lignin-Based Methacrylate Polymers with Tunable Thermal and Viscoelastic Properties. Macromolecules, 2016, 49, 1286-1295.	2.2	134
9	A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability. Science Advances, 2018, 4, eaat4967.	4.7	131
10	Preparation of Dynamic Covalent Polymers via Inverse Vulcanization of Elemental Sulfur. ACS Macro Letters, 2014, 3, 1258-1261.	2.3	124
11	Organic/Inorganic Hybrid Block Copolymer Electrolytes with Nanoscale Ion-Conducting Channels for Lithium Ion Batteries. Macromolecules, 2012, 45, 9347-9356.	2.2	108
12	Syringyl Methacrylate, a Hardwood Lignin-Based Monomer for High- <i>T</i> _g Polymeric Materials. ACS Macro Letters, 2016, 5, 574-578.	2.3	82
13	Multivalency in healable supramolecular polymers: the effect of supramolecular cross-link density on the mechanical properties and healing of non-covalent polymer networks. Polymer Chemistry, 2014, 5, 3680-3688.	1.9	75
14	Perylene as an electron-rich moiety in healable, complementary π–π stacked, supramolecular polymer systems. Polymer, 2015, 69, 293-300.	1.8	56
15	Rigid Oligomer from Lignin in Designing of Tough, Self-Healing Elastomers. ACS Macro Letters, 2018, 7, 1328-1332.	2.3	54
16	Supertough PLA-Silane Nanohybrids by in Situ Condensation and Grafting. ACS Sustainable Chemistry and Engineering, 2018, 6, 1289-1298.	3.2	39
17	An Acrylonitrile–Butadiene–Lignin Renewable Skin with Programmable and Switchable Electrical Conductivity for Stress/Strain-Sensing Applications. Macromolecules, 2018, 51, 115-127.	2.2	38
18	Shear-Induced Solution Crystallization of Poly(3-hexylthiophene) (P3HT). Macromolecules, 2014, 47, 3343-3349.	2.2	35

#	Article	IF	CITATIONS
19	Synthesis, selfâ€assembly and reversible healing of supramolecular perfluoropolyethers. Journal of Polymer Science Part A, 2013, 51, 3598-3606.	2.5	34
20	A Solventâ€Free Synthesis of Ligninâ€Derived Renewable Carbon with Tunable Porosity for Supercapacitor Electrodes. ChemSusChem, 2018, 11, 2953-2959.	3.6	32
21	Enthalpy of fusion of poly(3-hexylthiophene) by differential scanning calorimetry. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1469-1475.	2.4	28
22	Rheology, crystal structure, and nanomechanical properties in large-scale additive manufacturing of polyphenylene sulfide/carbon fiber composites. Composites Science and Technology, 2018, 168, 263-271.	3.8	27
23	Tunable Electromechanical Liquid Crystal Elastomer Actuators. Advanced Intelligent Systems, 2020, 2, 2000022.	3.3	27
24	Controlled Assembly of Lignocellulosic Biomass Components and Properties of Reformed Materials. ACS Sustainable Chemistry and Engineering, 2017, 5, 8044-8052.	3.2	22
25	A fundamental understanding of whole biomass dissolution in ionic liquid for regeneration of fiber by solution-spinning. Green Chemistry, 2019, 21, 4354-4367.	4.6	22
26	Mechanical, thermal, morphological, and rheological characteristics of high performance 3D-printing lignin-based composites for additive manufacturing applications. Data in Brief, 2018, 19, 936-950.	0.5	21
27	Using tapered interfaces to manipulate nanoscale morphologies in ion-doped block polymers. MRS Communications, 2015, 5, 251-256.	0.8	19
28	Responsive lignin for shape memory applications. Polymer, 2019, 160, 210-222.	1.8	16
29	Roll-to-Roll Processing of Silicon Carbide Nanoparticle-Deposited Carbon Fiber for Multifunctional Composites. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26576-26585.	4.0	15
30	Manipulating the glass transition behavior of sulfonated polystyrene by functionalized nanoparticle inclusion. Nanoscale, 2015, 7, 8864-8872.	2.8	13
31	Recycling Waste Polyester via Modification with a Renewable Fatty Acid for Enhanced Processability. ACS Omega, 2018, 3, 10709-10715.	1.6	12
32	Correlation between morphology and device performance of pBTTT:PC71BM solar cells. Solar Energy Materials and Solar Cells, 2016, 155, 387-396.	3.0	10
33	An Ionomeric Renewable Thermoplastic from Ligninâ€Reinforced Rubber. Macromolecular Rapid Communications, 2019, 40, e1900059.	2.0	10
34	Effects of graphene surface functionalities towards controlled reinforcement of a lignin based renewable thermoplastic rubber. Composites Science and Technology, 2020, 199, 108352.	3.8	10
35	Kinetics and Mechanism of Poly(3-hexylthiophene) Crystallization in Solution under Shear Flow. Macromolecules, 2020, 53, 5795-5804.	2.2	10
36	A comparative study on the morphology of P3HT:PCBM solar cells with the addition of Fe3O4 nanoparticles by spin and rod coating methods. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	9

#	Article	IF	CITATIONS
37	A tough and sustainable fiber-forming material from lignin and waste poly(ethylene terephthalate). RSC Advances, 2019, 9, 31202-31211.	1.7	8
38	Device performance enhancement of polymer solar cells by nanoparticle self-assembly. Solar Energy Materials and Solar Cells, 2017, 160, 126-133.	3.0	6
39	Method To Synthesize Micronized Spherical Carbon Particles from Lignin. Industrial & Description of the Engineering Chemistry Research, 2020, 59, 9-17.	1.8	6
40	Reduced Graphene Oxide Aerogels with Functionalization-Mediated Disordered Stacking for Sodium-Ion Batteries. Batteries, 2022, 8, 12.	2.1	5
41	Fractionation of Lignin for Selective Shape Memory Effects at Elevated Temperatures. Materials, 2020, 13, 1940.	1.3	3
42	Data of thermally active lignin-linkages and shape memory of lignin-rubber composites. Data in Brief, 2019, 22, 392-399.	0.5	1
43	Brush-Painted Solar Cells from Pre-Crystallized Components in a Nonhalogenated Solvent System Prepared by a Simple Stirring Technique. Macromolecules, 2020, 53, 8276-8285.	2.2	1
44	Thermal Analysis of Semiconducting Polymer Crystals Free of a Mobile Amorphous Fraction. Macromolecules, 2021, 54, 2155-2161.	2.2	1
45	The effect of nanoparticle enhanced sizing on the structural health monitoring sensitivity and mechanical properties of carbon fiber composites. , 2018 , , .		0