Andrea Mazzanti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2527831/publications.pdf

Version: 2024-02-01

241 papers

8,772 citations

44069 48 h-index 58581

244 all docs 244 docs citations

times ranked

244

6814 citing authors

g-index

#	Article	IF	CITATIONS
1	Analog Front End of 50-Gb/s SiGe BiCMOS Opto-Electrical Receiver in 3-D-Integrated Silicon Photonics Technology. IEEE Journal of Solid-State Circuits, 2022, 57, 312-322.	5.4	7
2	$1/f\hat{A}^2$ Phase Noise Analysis in Active-Coupling LC-Tank Oscillators With Frequency Mismatch. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 319-323.	3.0	4
3	<i>E</i> -Band Frequency Sextupler With >35 dB Harmonics Rejection Over 20 GHz Bandwidth in 55 nm BiCMOS. IEEE Journal of Solid-State Circuits, 2022, 57, 2155-2166.	5.4	6
4	A Broadband 22–31-GHz Bidirectional Image-Reject Up/Down Converter Module in 28-nm CMOS for 5G Communications. IEEE Journal of Solid-State Circuits, 2022, 57, 1968-1981.	5.4	11
5	4-Phenyl-1,2,3-triazoles as Versatile Ligands for Cationic Cyclometalated Iridium(III) Complexes. Inorganic Chemistry, 2022, 61, 8509-8520.	4.0	6
6	Acquisition RX Chain for PMUT-Based Highly Integrated Ultrasound Imaging Systems. , 2022, , .		2
7	A 112 Gb/s PAM-4 RX Front-End With Unclocked Decision Feedback Equalizer. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 256-260.	3.0	7
8	Highly twisted carbazole-borane derivatives: B–N stereodynamic analysis and consequences on their emission properties. Organic Chemistry Frontiers, 2021, 8, 4496-4507.	4.5	4
9	High Gain 130-GHz Frequency Doubler With Colpitts Output Buffer Delivering <i>P</i> _{out} up to 8 dBm with 6% PAE in 55-nm SiGe BiCMOS. IEEE Solid-State Circuits Letters, 2021, 4, 36-39.	2.0	10
10	A Multichannel D-Band Radar Receiver With Optimized LO Distribution. IEEE Solid-State Circuits Letters, 2021, 4, 141-144.	2.0	5
11	A 20-GHz Class-C VCO With 80-GHz Fourth-Harmonic Output in 28-nm CMOS. IEEE Microwave and Wireless Components Letters, 2021, 31, 1154-1157.	3.2	3
12	Doubly-Tuned Transformer Networks: A Tutorial. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 550-555.	3.0	14
13	Noncovalent Interactions between Stacked Arenes in 1,8â€Bisâ€(1â€naphthyl)â€naphthalenes. European Journal of Organic Chemistry, 2021, 2021, 2594-2603.	2.4	3
14	D-Band SiGe BiCMOS Power Amplifier With 16.8dBm Pâ,dB and 17.1% PAE Enhanced by Current-Clamping in Multiple Common-Base Stages. IEEE Microwave and Wireless Components Letters, 2021, 31, 288-291.	3.2	23
15	Catalytic Enantioselective Access to Dihydroquinoxalinones via Formal αâ€Halo Acyl Halide Synthon in One Pot. Angewandte Chemie, 2021, 133, 24012-24019.	2.0	3
16	Catalytic Enantioselective Access to Dihydroquinoxalinones via Formal αâ€Halo Acyl Halide Synthon in One Pot. Angewandte Chemie - International Edition, 2021, 60, 23819-23826.	13.8	16
17	Analysis and Design of D-Band Cascode SiGe BiCMOS Amplifiers With Gain-Bandwidth Product Enhanced by Load Reflection. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 4059-4068.	4.6	5
18	Chemodivergent Preparation of Various Heterocycles <i>via</i> Phaseâ€Transfer Catalysis: Enantioselective Synthesis of Functionalized Piperidines. Advanced Synthesis and Catalysis, 2020, 362, 1167-1175.	4.3	10

#	Article	IF	CITATIONS
19	Design of Compact D-Band Amplifiers With Accurate Modeling of Inductors and Current Return Paths in 55-nm SiGe BiCMOS. IEEE Solid-State Circuits Letters, 2020, 3, 250-253.	2.0	3
20	Iridium(III) Complexes with Fluorinated Phenyl-tetrazoles as Cyclometalating Ligands: Enhanced Excited-State Energy and Blue Emission. Inorganic Chemistry, 2020, 59, 16238-16250.	4.0	12
21	Nitrone/Imine Selectivity Switch in Baseâ€Catalysed Reaction of Aryl Acetic Acid Esters with Nitrosoarenes: Joint Experimental and Computational Study. Advanced Synthesis and Catalysis, 2020, 362, 5457-5466.	4.3	7
22	Impact of the Base Resistance Noise and Design of a â^190-dBc/Hz FoM Bipolar Class-C VCO. IEEE Solid-State Circuits Letters, 2020, 3, 90-93.	2.0	3
23	Stereochemistry and Recent Applications of Axially Chiral Organic Molecules. European Journal of Organic Chemistry, 2020, 2020, 4070-4086.	2.4	52
24	Light-Triggered Catalytic Asymmetric Allylic Benzylation with Photogenerated <i>C</i> Nucleophiles. Journal of Organic Chemistry, 2020, 85, 4463-4474.	3.2	18
25	150 GHz Differential Amplifiers with Lumped-Elements Matching Networks in 55 nm SiGe BiCMOS. , 2020,		0
26	Axial Chirality at the Boron–Carbon Bond: Synthesis, Stereodynamic Analysis, and Atropisomeric Resolution of 6-Aryl-5,6-dihydrodibenzo[⟨i⟩c,e⟨/i⟩][1,2]azaborinines. Journal of Organic Chemistry, 2019, 84, 12253-12258.	3.2	20
27	Deuterium Incorporation Protects Cells from Oxidative Damage. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	4.0	2
28	Rotation Barriers of 1â€Adamantylâ€Csp 3 Bonds Measured with Dynamic NMR. ChemistrySelect, 2019, 4, 7645-7648.	1.5	1
29	Determination of the absolute configuration of conformationally flexible molecules by simulation of chiro-optical spectra: a case study. RSC Advances, 2019, 9, 18165-18175.	3.6	10
30	Centralâ€toâ€Axial Chirality Conversion Approach Designed on Organocatalytic Enantioselective Povarov Cycloadditions: First Access to Configurationally Stable Indole–Quinoline Atropisomers. Chemistry - A European Journal, 2019, 25, 15694-15701.	3.3	62
31	D-Band Transport Solution to 5G and Beyond 5G Cellular Networks. , 2019, , .		19
32	Predictive chirality sensing via Schiff base formation. Organic and Biomolecular Chemistry, 2019, 17, 6699-6705.	2.8	6
33	High-Efficiency SiGe-BiCMOS \$E\$ -Band Power Amplifiers Exploiting Current Clamping in the Common-Base Stage. IEEE Journal of Solid-State Circuits, 2019, 54, 2175-2185.	5.4	19
34	Towards mm-wave spectroscopy for dielectric characterization of breast surgical margins. Breast, 2019, 45, 64-69.	2.2	28
35	Conformational and Stereodynamic Behavior of Five- to Seven-Membered 1-Aryl-2-iminoazacycloalkanes. ACS Omega, 2019, 4, 4712-4720.	3.5	9
36	Direct Access to Alkylideneoxindoles via Axially Enantioselective Knoevenagel Condensation. Organic Letters, 2019, 21, 3013-3017.	4.6	21

#	Article	IF	CITATIONS
37	Enantioselective Desymmetrization of 1,4â€Dihydropyridines by Oxidative NHC Catalysis. Chemistry - A European Journal, 2019, 25, 7469-7474.	3.3	15
38	A 26-Gb/s 3-D-Integrated Silicon Photonic Receiver in BiCMOS-55 nm and PIC25G With $\hat{a} \in \text{``} 15.2\text{-dBm OMA Sensitivity.'}$, 2019, , .		0
39	70–90-GHz Self-Tuned Polyphase Filter for Wideband I/Q LO Generation in a 55-nm BiCMOS Transmitter. , 2019, , .		1
40	70–90-GHz Self-Tuned Polyphase Filter for Wideband I/Q LO Generation in a 55-nm BiCMOS Transmitter. IEEE Solid-State Circuits Letters, 2019, 2, 155-158.	2.0	3
41	A 26-Gb/s 3-D-Integrated Silicon Photonic Receiver in BiCMOS-55 nm and PIC25G With â°'15.2-dBm OMA Sensitivity. IEEE Solid-State Circuits Letters, 2019, 2, 187-190.	2.0	4
42	40GHz Frequency Tripler with High Fundamental and Harmonics Rejection in 55nm SiGe-BiCMOS. , 2019, , .		3
43	A 64 Gb/s Low-Power Transceiver for Short-Reach PAM-4 Electrical Links in 28-nm FDSOI CMOS. IEEE Journal of Solid-State Circuits, 2019, 54, 6-17.	5.4	42
44	Development of a Focused Library of Triazoleâ€Linked Privilegedâ€Structureâ€Based Conjugates Leading to the Discovery of Novel Phenotypic Hits against Protozoan Parasitic Infections. ChemMedChem, 2018, 13, 678-683.	3.2	12
45	Enantioselective Dearomatization of Alkylpyridiniums by <i>N</i> NHeterocyclic Carbene-Catalyzed Nucleophilic Acylation. Journal of Organic Chemistry, 2018, 83, 2050-2057.	3.2	40
46	Catalytic Enantioselective Povarov Reactions of Ferrocenecarbaldehydeâ€Derived Imines – Brønsted Acid Catalysis at Partsâ€Perâ€Million Level Loading. Advanced Synthesis and Catalysis, 2018, 360, 893-900.	4.3	21
47	A PVT-Tolerant >40-dB IRR, 44% Fractional-Bandwidth Ultra-Wideband mm-Wave Quadrature LO Generator for 5G Networks in 55-nm CMOS. IEEE Journal of Solid-State Circuits, 2018, 53, 3576-3586.	5.4	24
48	Asymmetric vinylogous aldol addition of alkylidene oxindoles on trifluoromethyl- \hat{l}_{\pm} , \hat{l}_{\pm} -unsaturated ketones. RSC Advances, 2018, 8, 33451-33458.	3.6	14
49	Catalytic enantioselective one-pot approach to <i>cis</i> - and <i>trans</i> -2,3-diaryl substituted 1,5-benzothiazepines. Organic and Biomolecular Chemistry, 2018, 16, 6923-6934.	2.8	11
50	Enantioselective Synthesis of Trifluoromethyl $\hat{l}\pm,\hat{l}^2$ -Unsaturated \hat{l} -Lactones via Vinylogous Aldol-Lactonization Cascade. Journal of Organic Chemistry, 2018, 83, 12440-12448.	3.2	23
51	Quinoneâ€Fused Pyrazoles through 1,3â€Dipolar Cycloadditions: Synthesis of Tricyclic Scaffolds and in vitro Cytotoxic Activity Evaluation on Glioblastoma Cancer Cells. ChemMedChem, 2018, 13, 1744-1750.	3.2	14
52	Synergistic formal ring contraction for the enantioselective synthesis of spiropyrazolones. Chemical Science, 2018, 9, 6368-6373.	7.4	40
53	Second-Order Equivalent Circuits for the Design of Doubly-Tuned Transformer Matching Networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 4157-4168.	5.4	47
54	Synergistic Catalysis: Highly Enantioselective Acetyl Azaâ€arene Addition to Enals. Chemistry - A European Journal, 2018, 24, 13306-13310.	3.3	14

#	Article	IF	Citations
55	Stereodynamic Analysis of New Atropisomeric 4,7-Di(naphthalen-1-yl)-5,6-dinitro-1H-indoles. Synlett, 2018, 29, 2161-2166.	1.8	5
56	Nucleophilic Dearomatization of Pyridines under Enamine Catalysis: Regio-, Diastereo-, and Enantioselective Addition of Aldehydes to Activated <i>N</i> -Alkylpyridinium Salts. Organic Letters, 2017, 19, 834-837.	4.6	51
57	Betti's base for crystallization-induced deracemization of substituted aldehydes: synthesis of enantiopure amorolfine and fenpropimorph. Organic and Biomolecular Chemistry, 2017, 15, 2968-2978.	2.8	8
58	Michael Addition of Oxindoles to N-(2-tert-Butylphenyl)maleimides: Efficient Desymmetrization for the Synthesis of Atropisomeric Succinimides with Quaternary and Tertiary Stereocenters. Synthesis, 2017, 49, 1519-1530.	2.3	22
59	Hydroxy―and Methoxybenzene Derivatives with Benzenediazonium Salts ― Chemical Behavior and Tautomeric Problems. European Journal of Organic Chemistry, 2017, 2017, 964-974.	2.4	3
60	Highly Enantioselective Synthesis of Alkylpyridine Derivatives through a Michael/Michael/Aldol Cascade Reaction. European Journal of Organic Chemistry, 2017, 2017, 719-725.	2.4	7
61	Conformational Analysis and Absolute Configuration of Axially Chiral 1-Aryl and 1,3-Bisaryl-xanthines. Journal of Organic Chemistry, 2017, 82, 6874-6885.	3.2	14
62	Insights Into Phase-Noise Scaling in Switch-Coupled Multi-Core <italic>LC</italic> VCOs for E-Band Adaptive Modulation Links. IEEE Journal of Solid-State Circuits, 2017, 52, 1703-1718.	5.4	87
63	A 2–11 GHz 7-Bit High-Linearity Phase Rotator Based on Wideband Injection-Locking Multi-Phase Generation for High-Speed Serial Links in 28-nm CMOS FDSOI. IEEE Journal of Solid-State Circuits, 2017, 52, 1739-1752.	5.4	34
64	A 25mW Highly Linear Continuous-Time FIR Equalizer for 25Gb/s Serial Links in 28-nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 1903-1913.	5.4	9
65	Anionic Cyclometalated Iridium(III) Complexes with a Bis-Tetrazolate Ancillary Ligand for Light-Emitting Electrochemical Cells. Inorganic Chemistry, 2017, 56, 10584-10595.	4.0	36
66	A low-noise K-band class-C VCO for E-band 5G backhaul systems in 55nm BiCMOS technology. , 2017, , .		2
67	Controlling the C(sp3)–C(sp2) Axial Conformation in the Enantioselective Friedel–Crafts-Type Alkylation of β-Naphthols with Inden-1-ones. Organic Letters, 2017, 19, 6692-6695.	4.6	23
68	Organocatalytic Asymmetric Sulfaâ€Michael Addition of 2â€Aminothiophenols to Chalcones: First Enantioselective Access to 2,3,4,5â€Tetrahydroâ€1,5â€benzothiazepines. European Journal of Organic Chemistry, 2017, 2017, 49-52.	2.4	19
69	An Atropisomerically Enforced Phosphoric Acid for Organocatalytic Asymmetric Reactions. European Journal of Organic Chemistry, 2016, 2016, 3208-3216.	2.4	14
70	Axial Chirality about Boron–Carbon Bond: Atropisomeric Azaborines. Organic Letters, 2016, 18, 2692-2695.	4.6	23
71	Enantioselective Organocatalytic Cyclopropanation of Enals Using Benzyl Chlorides. Journal of Organic Chemistry, 2016, 81, 3488-3500.	3.2	26
72	A multi-core VCO and a frequency quadrupler for E-Band adaptive-modulation links in 55nm BiCMOS. , 2016, , .		7

#	Article	IF	Citations
73	A High-Swing 45 Gb/s Hybrid Voltage and Current-Mode PAM-4 Transmitter in 28 nm CMOS FDSOI. IEEE Journal of Solid-State Circuits, 2016, 51, 2702-2715.	5.4	36
74	Computational and DNMR Analysis of the Conformational Isomers and Stereodynamics of Secondary 2,2′-Bisanilides. Journal of Organic Chemistry, 2016, 81, 89-99.	3.2	6
75	Synergistic catalysis: cis-cyclopropanation of benzoxazoles. Chemical Science, 2016, 7, 984-988.	7.4	43
76	Catalytic Asymmetric Reactions of 4â€Substituted Indoles with Nitroethene: A Direct Entry to Ergot Alkaloid Structures. Chemistry - A European Journal, 2015, 21, 17578-17582.	3.3	46
77	An Unexpected Pathway to Enantiomerization of Hemithioketals in Toluene Involving a Dimeric Transition State: A Combined Experimental and Computational Study. European Journal of Organic Chemistry, 2015, 2015, 4353-4357.	2.4	3
78	Enantioselective Preparation, Conformational Analysis and Absolute Configuration of Highly Substituted Aziridines. Chirality, 2015, 27, 875-887.	2.6	4
79	A low-noise programmable-gain amplifier for 25 Gb/s multi-mode fiber receivers in 28nm CMOS FDSOI. , 2015, , .		1
80	A 15 GHz-bandwidth 20dBm P <inf>SAT</inf> power amplifier with 22% PAE in 65nm CMOS. , 2015, , .		5
81	Synthesis and antimicrobial activity of novel structural hybrids of benzofuroxan and benzothiazole derivatives. European Journal of Medicinal Chemistry, 2015, 93, 349-359.	5.5	54
82	Chiral nanostructuring of multivalent macrocycles in solution and on surfaces. Organic and Biomolecular Chemistry, 2015, 13, 3593-3601.	2.8	48
83	Catalytic Asymmetric Addition of Meldrum's Acid, Malononitrile, and 1,3â€Dicarbonyls to <i>ortho</i> â€Quinone Methides Generated In Situ Under Basic Conditions. Chemistry - A European Journal, 2015, 21, 6037-6041.	3.3	106
84	APTES mediated modular modification of regenerated silk fibroin in a water solution. RSC Advances, 2015, 5, 63401-63406.	3.6	14
85	Vinylogous Reactivity of Oxindoles Bearing Nonsymmetric 3-Alkylidene Groups. Journal of Organic Chemistry, 2015, 80, 7158-7171.	3.2	30
86	Long-Range Bonding/Nonbonding Interactions: A Donor–Acceptor Resonance Studied by Dynamic NMR. Organic Letters, 2015, 17, 2740-2743.	4.6	6
87	Organocatalytic Atroposelective Formal Diels–Alder Desymmetrization of <i>N</i> Arylmaleimides. Organic Letters, 2015, 17, 1728-1731.	4.6	51
88	A 40â€"67 GHz Power Amplifier With 13 dBm \${m P}_{m SAT}\$ and 16% PAE in 28 nm CMOS LP. IEEE Journal of Solid-State Circuits, 2015, 50, 1618-1628.	5.4	75
89	On the Phase Noise Performance of Transformer-Based CMOS Differential-Pair Harmonic Oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62, 2334-2341.	5.4	67
90	Catalytic highly enantioselective transfer hydrogenation of \hat{l}^2 -trifluoromethyl nitroalkenes. An easy and general entry to optically active \hat{l}^2 -trifluoromethyl amines. Chemical Communications, 2015, 51, 658-660.	4.1	33

#	Article	IF	Citations
91	Structure and conformational dynamics of an aromatic sulfonamide: NMR, X-Ray and computational studies. Arkivoc, 2015, 2015, 66-79.	0.5	1
92	A 40–67GHz power amplifier with 13dBm PSAT and 16% PAE in 28 nm CMOS LP. , 2014, , .		2
93	Catalytic asymmetric one-pot synthesis of \hat{l}_{\pm} -methylene- \hat{l}_{3} -lactams. Tetrahedron, 2014, 70, 75-82.	1.9	29
94	The Experimental Observation of the Intramolecular NO ₂ /CO Interaction in Solution. Angewandte Chemie - International Edition, 2014, 53, 5405-5409.	13.8	9
95	Asymmetric synthesis of 3,4-annulated indoles through an organocatalytic cascade approach. Chemical Communications, 2014, 50, 445-447.	4.1	33
96	Axial Chirality of 4-Arylpyrazolo[3,4- <i>b</i>)pyridines. Conformational Analysis and Absolute Configuration. Journal of Organic Chemistry, 2014, 79, 11039-11050.	3.2	25
97	Analysis and Design of a Power-Scalable Continuous-Time FIR Equalizer for 10 Gb/s to 25 Gb/s Multi-Mode Fiber EDC in 28 nm LP CMOS. IEEE Journal of Solid-State Circuits, 2014, 49, 3130-3140.	5.4	23
98	Substrate and product role in the Shvo's catalyzed selective hydrogenation of the platform bio-based chemical 5-hydroxymethylfurfural. Dalton Transactions, 2014, 43, 10224-10234.	3.3	60
99	N-Heterocyclic carbene rhodium(<scp>i</scp>) complexes containing an axis of chirality: dynamics and catalysis. New Journal of Chemistry, 2014, 38, 1768-1779.	2.8	21
100	Iridium(III) Complexes with Phenyl-tetrazoles as Cyclometalating Ligands. Inorganic Chemistry, 2014, 53, 7709-7721.	4.0	72
101	Remote Control of Axial Chirality: Aminocatalytic Desymmetrization of <i>N</i> -Arylmaleimides via Vinylogous Michael Addition. Journal of the American Chemical Society, 2014, 136, 10250-10253.	13.7	134
102	A Low-Noise Design Technique for High-Speed CMOS Optical Receivers. IEEE Journal of Solid-State Circuits, 2014, 49, 1437-1447.	5.4	179
103	Computational and DNMR Investigation of the Isomerism and Stereodynamics of the 2,2 \hat{a} €2-Binaphthalene-1,1 \hat{a} €2-diol Scaffold. Journal of Organic Chemistry, 2014, 79, 3725-3730.	3.2	11
104	A Proton Dance: Wheland Complexes and Ammonium Salts Obtained from Organic Acids and 1,3,5-Tris(N,N-dialkylamino)benzene Derivatives. Current Organic Chemistry, 2014, 18, 512-523.	1.6	12
105	Merging Synthesis and Enantioselective Functionalization of Indoles by a Gold atalyzed Asymmetric Cascade Reaction. Angewandte Chemie - International Edition, 2013, 52, 10850-10853.	13.8	65
106	Catalytic highly enantioselective vinylogous Povarov reaction. Chemical Communications, 2013, 49, 880-882.	4.1	58
107	First one-pot organocatalytic synthesis of \hat{l}_{\pm} -methylene- \hat{l}_{-} -lactones. Chemical Communications, 2013, 49, 1184.	4.1	45
108	Atropisomers of Arylmaleimides: Stereodynamics and Absolute Configuration. Journal of Organic Chemistry, 2013, 78, 3709-3719.	3.2	32

#	Article	IF	Citations
109	A Rational Approach Towards a New Ferrocenyl Pyrrolidine for Stereoselective Enamine Catalysis. Chemistry - A European Journal, 2013, 19, 7696-7700.	3.3	23
110	Triple Click to Tripodal Triazole-Based Ligands - Synthesis and Characterization of Blue-Emitting Ce3+Complexes. European Journal of Inorganic Chemistry, 2013, 2013, 2432-2439.	2.0	17
111	Experimental and Computational Investigation of the 1,3â€Dipolar Cycloaddition of the Ynamide <i>tert</i> â€Butyl <i>N</i> â€Ethynylâ€ <i>N</i> â€phenylcarbamate with <i>C</i> â€Carboxymethylâ€ <i>N</i> â€phenylnitrilimine. European Journal of Organic Chemistry, 2013, 2013, 8108-8114.	2.4	3
112	Fluoride-induced proto- and carbo-desilylation of S,S-, O,O- and O,S-silylated acetals: an insight into the chemical and stereochemical reaction outcome. Journal of Sulfur Chemistry, 2013, 34, 606-616.	2.0	0
113	Atropisomers of Hindered Triarylisocyanurates: Structure, Conformation, Stereodynamics, and Absolute Configuration. Journal of Organic Chemistry, 2012, 77, 3373-3380.	3.2	13
114	Iminium ion catalysis: the enantioselective Friedelâ \in Crafts alkylationâ \in acetalization cascade of naphthols with $\hat{l}\pm,\hat{l}^2$ -unsaturated cyclic ketones. Chemical Communications, 2012, 48, 11178.	4.1	49
115	Organocatalytic enantioselective pyrazol-3-one addition to maleimides: Reactivity and stereochemical course. Organic and Biomolecular Chemistry, 2012, 10, 1645.	2.8	60
116	Rotational barriers of biphenyls having heavy heteroatoms as ortho-substituents: experimental and theoretical determination of steric effects. Organic and Biomolecular Chemistry, 2012, 10, 1847.	2.8	53
117	(+)-syn-Benzotriborneol an enantiopure C3-symmetric receptor for water. Organic and Biomolecular Chemistry, 2012, 10, 2464.	2.8	9
118	Enantioselective Gold-Catalyzed Synthesis of Polycyclic Indolines. Organic Letters, 2012, 14, 1350-1353.	4.6	208
119	Recent trends in conformational analysis. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 613-641.	14.6	65
120	Solventâ€Free Nonâ€Covalent Organocatalysis: Enantioselective Addition of Nitroalkanes to Alkylideneindolenines as a Flexible Gateway to Optically Active Tryptamine Derivatives. Advanced Synthesis and Catalysis, 2012, 354, 1373-1380.	4.3	43
121	An Experimental Study on the Effect of Substituents on Aromatic–Aromatic Interactions in Dithia[3,3]â€metaparacyclophanes. Chemistry - A European Journal, 2012, 18, 3611-3620.	3.3	29
122	Trapping and Analysing Wheland–Meisenheimer Ïf Complexes, Usually Labile and Escaping Intermediates. European Journal of Organic Chemistry, 2012, 2012, 1123-1129.	2.4	26
123	Stereolability of Dihydroartemisinin, an Antimalarial Drug: A Comprehensive Kinetic Investigation. Part 2. Journal of Organic Chemistry, 2011, 76, 4831-4840.	3.2	17
124	Structure, Conformation, Stereodynamics, and Absolute Configuration of the Atropisomers of Fluorenylidene Derivatives. Journal of Organic Chemistry, 2011, 76, 1487-1490.	3.2	2
125	Stereolability of Dihydroartemisinin, an Antimalarial Drug: A Comprehensive Thermodynamic Investigation. Part 1. Journal of Organic Chemistry, 2011, 76, 1751-1758.	3.2	19
126	Highly enantioselective cascade synthesis of spiropyrazolones. Organic and Biomolecular Chemistry, 2011, 9, 6519.	2.8	104

#	Article	IF	Citations
127	N-Heterocyclic Carbene-Amide Rhodium(I) Complexes: Structures, Dynamics, and Catalysis. Organometallics, 2011, 30, 5258-5272.	2.3	66
128	A Wideband Receiver for Multi-Gbit/s Communications in 65 nm CMOS. IEEE Journal of Solid-State Circuits, 2011, 46, 551-561.	5 . 4	64
129	Conformation and stereodynamics of 1,2-diaryltetrahydropyrimidine and of its five- and seven-membered ring analogs. Tetrahedron, 2011, 67, 9129-9133.	1.9	4
130	A Low-Noise Quadrature VCO Based on Magnetically Coupled Resonators and a Wideband Frequency Divider at Millimeter Waves. IEEE Journal of Solid-State Circuits, 2011, 46, 2943-2955.	5 . 4	71
131	Enantiopure α-imino glyoxylate: a versatile substrate for the spontaneous asymmetric synthesis of unnatural hydroxyaryl glycinates. Tetrahedron: Asymmetry, 2011, 22, 591-596.	1.8	11
132	An Easy Entry to Optically Active Spiroindolinones: Chiral Brønsted Acidâ€Catalysed Pictet–Spengler Reactions of Isatins. Advanced Synthesis and Catalysis, 2011, 353, 860-864.	4.3	149
133	<i>Cinchona</i> Alkaloidâ€Catalyzed Enantioselective Direct Aldol Reaction of <i>N</i> â€Bocâ€Oxindoles with Polymeric Ethyl Glyoxylate. Advanced Synthesis and Catalysis, 2011, 353, 2953-2959.	4.3	14
134	Highly Stereoselective Synthesis of Spiropyrazolones. European Journal of Organic Chemistry, 2011, 2011, 1318-1325.	2.4	98
135	Betti Reaction of Cyclic Imines with Naphthols and Phenols – Preparation of New Derivatives of Betti's Bases. European Journal of Organic Chemistry, 2011, 2011, 2094-2100.	2.4	31
136	How Spaceâ€Filling Is a Pyridine Lone Pair?. European Journal of Organic Chemistry, 2011, 2011, 6725-6731.	2.4	7
137	Organocatalytic Michael–Alkylation Cascade: The Enantioselective Nitrocyclopropanation of Oxindoles. Chemistry - A European Journal, 2011, 17, 2842-2845.	3.3	139
138	Push–Pull Amino Succinimidyl Ester Thiopheneâ€Based Fluorescent Dyes: Synthesis and Optical Characterization. Chemistry - A European Journal, 2011, 17, 7947-7952.	3.3	21
139	Quaternary Centres as a Tool for Modulating Foldamer Conformation. Chemistry - A European Journal, 2011, 17, 12564-12568.	3.3	14
140	Stereodynamics and absolute configuration of stereolabile atropisomers in 2,2â€dimethylâ€1â€arylâ€1â€indanols. Chirality, 2011, 23, 768-778.	2.6	4
141	Asymmetric Catalytic Aziridination of Cyclic Enones. Chemistry - an Asian Journal, 2010, 5, 1652-1656.	3. 3	61
142	Recent Advances in Stereodynamics and Conformational Analysis by Dynamic NMR and Theoretical Calculations. European Journal of Organic Chemistry, 2010, 2010, 2035-2056.	2.4	108
143	Catalytic Asymmetric Inverseâ€Electronâ€Demand (IED) [4+2] Cycloaddition of Salicylaldimines: Preparation of Optically Active 4â€Aminobenzopyran Derivatives. Advanced Synthesis and Catalysis, 2010, 352, 3399-3406.	4.3	52
144	The Torsional Barriers of 2â€Hydroxy―and 2â€Fluorobiphenyl: Small but Measurable. Chemistry - A European Journal, 2010, 16, 9186-9192.	3.3	31

#	Article	IF	CITATIONS
145	The Intramolecular Interaction of Thiophene and Furan with Aromatic and Fluoroaromatic Systems in Some [3.3]Meta(heterocyclo)paracyclophanes: A Combined Computational and NMR Spectroscopic Study. Chemistry - A European Journal, 2010, 16, 7456-7468.	3.3	22
146	Structure and Stereodynamics of Aryldiimino Derivatives. Journal of Organic Chemistry, 2010, 75, 2572-2577.	3.2	2
147	Locked chromophores as CD and NMR probes for the helical conformation of tetraamidic macrocycles. Organic and Biomolecular Chemistry, 2010, 8, 1807.	2.8	27
148	The biphenyl-monitored effective size of unsaturated functional or fluorinated ortho substituents. Organic and Biomolecular Chemistry, 2010, 8, 4463.	2.8	38
149	Organocatalytic synthesis of spiro compounds via a cascade Michael–Michael-aldol reaction. Chemical Communications, 2010, 46, 6953.	4.1	219
150	Stereomutation of Axially Chiral Aryl Coumarins. Journal of Organic Chemistry, 2010, 75, 5927-5933.	3.2	30
151	Organocatalytic asymmetric Povarov reactions with 2- and 3-vinylindoles. Chemical Communications, 2010, 46, 327-329.	4.1	165
152	Direct asymmetric vinylogous Michael addition of cyclic enones to nitroalkenes via dienamine catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20642-20647.	7.1	181
153	Conformation and absolute configuration of 2â€naphthylalkylsulfoxides by combined use of dynamic NMR, ECD spectroscopy, DFT computations, and Xâ€ray diffraction. Chirality, 2009, 21, 16-23.	2.6	10
154	<i>B</i> Values as a Sensitive Measure of Steric Effects. Chemistry - A European Journal, 2009, 15, 2645-2652.	3.3	50
155	Asymmetric Iminium Ion Catalysis with a Novel Bifunctional Primary Amine Thiourea: Controlling Adjacent Quaternary and Tertiary Stereocenters. Chemistry - A European Journal, 2009, 15, 7846-7849.	3.3	159
156	The Intramolecular Edgeâ€toâ€Face Interactions of an Aryl CH Bond and of a Pyridine Nitrogen Loneâ€Pair with Aromatic and Fluoroaromatic Systems in Some [3,3]Metaparacyclophanes: A Combined Computational and NMR Study. Chemistry - A European Journal, 2009, 15, 4373-4381.	3.3	35
157	Targeting Structural and Stereochemical Complexity by Organocascade Catalysis: Construction of Spirocyclic Oxindoles Having Multiple Stereocenters. Angewandte Chemie - International Edition, 2009, 48, 7200-7203.	13.8	429
158	Organocascade Reactions of Enones Catalyzed by a Chiral Primary Amine. Angewandte Chemie - International Edition, 2009, 48, 7196-7199.	13.8	196
159	Asymmetric Organocatalytic Cascade Reactions with αâ€Substituted α,βâ€Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2009, 48, 7892-7894.	13.8	144
160	Structure, Stereodynamics and Absolute Configuration of the Atropisomers of Hindered Arylanthraquinones. Journal of Organic Chemistry, 2009, 74, 1345-1348.	3.2	18
161	Meisenheimerâ^Wheland Complexes between 1,3,5-Tris(<i>N</i> , <i>N</i> , <i>N</i> , <ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<i>N</i>,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<ii>N,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N</i>,<i>N<td>3.2</td><td>26</td></i></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii></ii>	3.2	26
162	Tweezering the Core of Dendrimers: Medium Effect on the Kinetic and Thermodynamic Properties. Journal of Organic Chemistry, 2009, 74, 7335-7343.	3.2	12

#	Article	IF	Citations
163	Organocatalytic Asymmetric Formal $[3 + 2]$ Cycloaddition with in Situ-Generated $\langle i \rangle N \langle i \rangle$ -Carbamoyl Nitrones. Journal of the American Chemical Society, 2009, 131, 9614-9615.	13.7	99
164	Steric effects which determine the conformational preferences and stereodynamic processes of aryl fluorenyl ketones. Organic and Biomolecular Chemistry, 2009, 7, 1619.	2.8	4
165	Quaternary Stereogenic Carbon Atoms in Complex Molecules by an Asymmetric, Organocatalytic, Tripleâ€Cascade Reaction. Chemistry - A European Journal, 2008, 14, 4788-4791.	3.3	104
166	Multicomponent Domino Reaction Promoted by Mg(ClO ₄) ₂ : Highly Efficient Access to Functionalized 1,4â€Dihydropyridines. European Journal of Organic Chemistry, 2008, 2008, 3970-3975.	2.4	17
167	Organocatalytic Asymmetric Aziridination of Enones. Angewandte Chemie - International Edition, 2008, 47, 8703-8706.	13.8	180
168	Prolineâ€Catalyzed Asymmetric Formal αâ€Alkylation of Aldehydes via Vinylogous Iminium Ion Intermediates Generated from Arylsulfonyl Indoles. Angewandte Chemie - International Edition, 2008, 47, 8707-8710.	13.8	187
169	Class-C Harmonic CMOS VCOs, With a General Result on Phase Noise. IEEE Journal of Solid-State Circuits, 2008, 43, 2716-2729.	5.4	401
170	Chair to Boat Interconversion and Face to Face Interactions in Isomeric Aryl-Substituted Perhydrocyclopentaquinolizines. Journal of Organic Chemistry, 2008, 73, 678-688.	3.2	6
171	Enantiomerization of Chiral Uranylâ^'Salophen Complexes via Unprecedented Ligand Hemilability: Toward Configurationally Stable Derivatives. Journal of Organic Chemistry, 2008, 73, 6108-6118.	3.2	26
172	Correlated Rotations in Benzylfluorene Derivatives:  Structure, Conformation, and Stereodynamics. Journal of Organic Chemistry, 2008, 73, 2811-2818.	3.2	13
173	Stereodynamics and Conformational Chirality of the Atropisomers of Ditolyl Anthrones and Anthraquinone. Journal of Organic Chemistry, 2008, 73, 5354-5359.	3.2	20
174	Regio- and Stereoselective Lithiation of 2,3-Diphenylaziridines:  A Multinuclear NMR Investigation. Journal of Organic Chemistry, 2008, 73, 3197-3204.	3.2	27
175	Stereomutation of Conformational Enantiomers of 9-Isopropyl-9-formylfluorene and Related Acyl Derivatives. Journal of Organic Chemistry, 2008, 73, 6382-6385.	3.2	4
176	Arylbiphenylene Atropisomers:  Structure, Conformation, Stereodynamics, and Absolute Configuration. Journal of Organic Chemistry, 2008, 73, 2198-2205.	3.2	22
177	Conformation and Stereodynamics of Symmetrically Ortho-Disubstituted Aryl Carbinols and Aryl Ethers. Journal of Organic Chemistry, 2007, 72, 998-1004.	3.2	5
178	Organocatalytic asymmetric hydrophosphination of nitroalkenes. Chemical Communications, 2007, , 722-724.	4.1	93
179	The same and not the same. Similarities and differences in the resolution of trans-chrysanthemic acid of industrial origin by the enantiomers of some threo-1-aryl-2-dimethylamino-1,3-propanediols. Green Chemistry, 2007, 9, 441.	9.0	9
180	Correct Values of the Rotation Barriers of 1,8-Ditolylanthracenes. Journal of Organic Chemistry, 2007, 72, 5391-5394.	3.2	29

#	Article	IF	Citations
181	Conformational Consequences of the Dynamic Processes in the Stereolabile Atropisomers of Acyl-Substitutedm-Terphenyl Derivatives. Journal of Organic Chemistry, 2007, 72, 2501-2507.	3.2	11
182	Unprecedented Detection of Enantiomerization π-Barriers Due to Restricted Aryl Torsion:  Case of 1,8-Di-arylbiphenylenes. Journal of Organic Chemistry, 2007, 72, 10045-10050.	3.2	10
183	Structure, Conformation, Stereodynamics, Dimer Formation, and Absolute Configuration of Axially Chiral Atropisomers of Hindered Biphenyl Carbinols. Journal of Organic Chemistry, 2007, 72, 7667-7676.	3.2	40
184	Five-to-Six Membered Ring-Rearrangements in the Reaction of 5-Perfluoroalkyl-1,2,4-oxadiazoles with Hydrazine and Methylhydrazine. Journal of Organic Chemistry, 2006, 71, 8106-8113.	3.2	55
185	Ring Inversion Dynamics of Derivatives of Thianthrene Di- and Tetraoxide§. Journal of Organic Chemistry, 2006, 71, 6248-6250.	3.2	16
186	Structure, Conformation, and Stereodynamics of the Atropisomers of Highly Hindered Benzyl Ethers. Journal of Organic Chemistry, 2006, 71, 4490-4496.	3.2	9
187	Rotation in Biphenyls with a Single Ortho-Substituent. Journal of Organic Chemistry, 2006, 71, 5474-5481.	3.2	73
188	p1,n1 Salts: self-assembled supramolecular structures sequestering racemates. Diastereomeric separation and enantiomeric enrichment of trans-chrysanthemic acid. Chemical Communications, 2006, , 4294.	4.1	6
189	Unexpected Stereodynamic Consequences of the Restricted Rotations in ortho-Acyl- and ortho-Vinyl Biphenyls. Journal of Organic Chemistry, 2006, 71, 9297-9301.	3.2	14
190	Conformational Behavior of Tris(pentafluorophenyl)boraneâ^Benzotriazole Adducts. Organometallics, 2006, 25, 2166-2172.	2.3	13
191	Content of flavonols in Italian bean (Phaseolus vulgaris L.) ecotypes. Food Chemistry, 2006, 99, 105-114.	8.2	82
192	Organocatalytic Asymmetric Conjugate Addition of 1,3-Dicarbonyl Compounds to Maleimides. Angewandte Chemie - International Edition, 2006, 45, 4966-4970.	13.8	147
193	Unusual Peptidomimetic Reaction of 1,2-Diaza-1,3-butadienes: Straightforward Entry to 2,3,6-Triazabicyclo[3.2.1]oct-3-enes, 5-Oxo-4,5-dihydro-2-pyrazines, and 2-Carbonyl-2-oxopropylaminoacetates. Synlett, 2006, 2006, 2403-2406.	1.8	0
194	First 1,3-Dipolar Cycloaddition of Azomethine Ylides with (E)-Ethyl 3-Fluoroacrylate: Regio- and Stereoselective Synthesis of Enantiopure ÂFluorinated Prolines. Synlett, 2006, 2006, 0543-0546.	1.8	2
195	Structure and conformational processes of bis(o-cumyl)sulfide, sulfoxide and sulfone. Tetrahedron, 2005, 61, 6782-6790.	1.9	9
196	Evidence for Carbon-Carbon Meisenheimer-Wheland Complexes between Superelectrophilic and Supernucleophilic Carbon Reagents. Angewandte Chemie - International Edition, 2005, 44, 3285-3289.	13.8	52
197	Stereomutations of Two-Bladed Propeller Derivatives:Â Ortho-Substituted Diaryl Ethylene and Diaryl Ketone. Journal of Organic Chemistry, 2005, 70, 456-462.	3.2	7
198	Static and Dynamic Stereochemistry of the Conformational Atropisomers of Tetra(o-tolyl)benzene. Journal of Organic Chemistry, 2005, 70, 10062-10066.	3.2	10

#	Article	IF	Citations
199	Stereomutations of Atropisomers of Sterically Hindered Salophen Ligands. Journal of Organic Chemistry, 2005, 70, 8877-8883.	3.2	50
200	Stereolabile and Configurationally Stable Atropisomers of Hindered Aryl Carbinols. Journal of Organic Chemistry, 2005, 70, 5098-5102.	3.2	26
201	Structure, Conformation, and Dynamic Processes of the Stereolabile Atropisomers of Hindered Terphenyl Hydrocarbons. Organic Letters, 2005, 7, 1291-1294.	4.6	46
202	First 1,3-dipolar cycloaddition of Z-α-phenyl-N-methylnitrone with allylic fluorides: a stereoselective route to enantiopure fluorine-containing isoxazolidines and amino polyols. Tetrahedron: Asymmetry, 2004, 15, 245-250.	1.8	22
203	Conformational studies by dynamic NMR spectroscopy. Part 96: Stereomutations of highly hindered naphthylphenyl atropisomers in solution and in the solids. Tetrahedron, 2004, 60, 4451-4458.	1.9	26
204	Conformational Studies by Dynamic NMR. 97.1Structure, Conformation, Stereodynamics and Enantioseparation of Aryl Substituted Norbornanes. Journal of Organic Chemistry, 2004, 69, 345-351.	3.2	11
205	A New NMR Approach for the Assignment of Symmetric Isomers. Journal of the American Chemical Society, 2004, 126, 12155-12157.	13.7	12
206	Preparation of Bicyclo[3.2.0]heptane-2-endo,7-endo-diols: 1,3-Diols with a Chiral Rigid Backboneâ€. Journal of Organic Chemistry, 2004, 69, 1353-1356.	3.2	10
207	Conformational Studies by Dynamic NMR. 98.1Stereodynamics of Bond Rotation in \hat{l}^2 -Hydroxyesters. Journal of Organic Chemistry, 2004, 69, 821-825.	3.2	5
208	Conformational Studies by Dynamic NMR. 99.1Experimental and Computed Determination of Rotation Barriers in the Crystalline State:Â The Case of Naphthylphenylsulfoxide. Journal of Organic Chemistry, 2004, 69, 3574-3577.	3.2	11
209	Conformational Studies by Dynamic NMR. 100.1Enantiomerization Process of Stereolabile Atropisomers in Pyridine-Substituted Adamantane Derivatives. Journal of Organic Chemistry, 2004, 69, 5746-5748.	3.2	6
210	Conformational Studies by Dynamic NMR. 95.1Rotation around the Adamantylâ^'Alkyl Bond. Remote Substituent Effect on Conformational Equilibrium. Journal of Organic Chemistry, 2003, 68, 8494-8499.	3.2	9
211	Conformational Studies by Dynamic NMR. 93.1Stereomutation, Enantioseparation, and Absolute Configuration of the Atropisomers of Diarylbicyclononanes. Journal of Organic Chemistry, 2003, 68, 1815-1820.	3.2	28
212	Conformational Studies by Dynamic NMR. 94.1Cogwheel Pathway for the Stereomutations of Durene Derivatives Containing the Mesityl Ring. Journal of Organic Chemistry, 2003, 68, 7266-7273.	3.2	15
213	Conformational Studies by Dynamic NMR. 86.1 Structure, Stereodynamics, and Cryogenic Enantioseparation of the Stereolabile Isomers ofo-Dinaphthylphenyl Derivatives. Journal of Organic Chemistry, 2002, 67, 1663-1668.	3.2	47
214	Conformational Studies by Dynamic NMR. 91.1Conformational Stereodynamics of Tetraethylmethane and Analogous C(CH2X)4Compounds. Journal of Organic Chemistry, 2002, 67, 6387-6394.	3.2	7
215	Conformational Studies by Dynamic NMR. 89.1Stereomutation and Cryogenic Enantioseparation of Conformational Antipodes of Hindered Aryl Oximes. Journal of Organic Chemistry, 2002, 67, 3089-3095.	3.2	29
216	Conformational Studies by Dynamic NMR. 90.1Structure and Stereodynamics of the Rotamers of Diand Tri-α-naphthylphenyl Derivatives. Journal of Organic Chemistry, 2002, 67, 5733-5738.	3.2	13

#	Article	IF	CITATIONS
217	Conformational Dynamics of Tetraisopropylmethane and of Tetracyclopropylmethane1. Journal of the American Chemical Society, 2002, 124, 6706-6713.	13.7	21
218	Conformational Studies by Dynamic NMR. 88.1Stereomutation Processes in the Diastereoisomers of a Representative Amino Alcohol and Related Amide Precursorsâ€. Journal of Organic Chemistry, 2002, 67, 2659-2664.	3.2	7
219	Conformational Studies by Dynamic NMR. 84.1 Structure, Conformation, and Stereodynamics of the Atropisomers of N-Aryl-tetrahydropyrimidines. Journal of Organic Chemistry, 2001, 66, 6679-6684.	3.2	28
220	Conformational Studies by Dynamic NMR. 78.1Stereomutation of the Helical Enantiomers of Trigonal Carbon Diaryl-Substituted Compounds:Â Dimesitylketone, Dimesitylthioketone, and Dimesitylethylene. Journal of Organic Chemistry, 2001, 66, 488-495.	3.2	27
221	Conformational Studies by Dynamic NMR. 80.1Cog-Wheel Effect in the Stereolabile Helical Enantiomers of Dimesityl Sulfoxide and Sulfone. Journal of Organic Chemistry, 2001, 66, 2757-2763.	3.2	25
222	Conformational Studies by Dynamic NMR. 83.1 Correlated Enantiomerization Pathways for the Stereolabile Propeller Antipodes of Dimesityl Substituted Ethanol and Ethers. Journal of Organic Chemistry, 2001, 66, 5853-5858.	3.2	19
223	Conformational Studies by Dynamic NMR. 79.1Dimesityl Sulfine Revisited:Â Detection of the Helical Antipodes and Determination of Their Enantiomerization Pathways. Journal of Organic Chemistry, 2001, 66, 748-754.	3.2	17
224	Conformational Studies by Dynamic NMR. 85.1Stereomutation of Conformational Atropisomers of o-tert-Butylphenyl Alkyl Ketones. Journal of Organic Chemistry, 2001, 66, 7879-7882.	3.2	8
225	Unprecedented Detection of Distinct Barriers Involving Formally Enantiotopic Substituents: Phenyl Rotation in Solid Diphenyl Sulfoxide. Angewandte Chemie - International Edition, 2001, 40, 2536-2540.	13.8	22
226	Solvent-Free Asymmetric Aminoalkylation of Electron-Rich Aromatic Compounds:  Stereoselective Synthesis of Aminoalkylnaphthols by Crystallization-Induced Asymmetric Transformation. Journal of Organic Chemistry, 2001, 66, 4759-4765.	3.2	128
227	Conformational Studies by Dynamic NMR. 71.1 Stereodynamics of Triisopropyl(aryl)silanes in Solution and in the Solid State. Journal of Organic Chemistry, 2000, 65, 1729-1737.	3.2	7
228	Conformational Studies by Dynamic NMR. 70.1Stereomutations of Homochiral Dicarvone in Solution and in the Solid State. Journal of Organic Chemistry, 2000, 65, 883-888.	3.2	11
229	Conformational Studies by Dynamic NMR. 72.1Stereolabile Enantiomers of Acyl and Thioacyl Ferrocenes. Journal of Organic Chemistry, 2000, 65, 2596-2598.	3.2	7
230	Conformational Studies by Dynamic NMR. 73.1 Conformational Enantiomers of Cyclohexene Oxide in the Solid State. Journal of Organic Chemistry, 2000, 65, 3207-3208.	3.2	17
231	Conformational Studies by Dynamic NMR. 74.1Stereomutations of the Conformational Enantiomers in Peri-Substituted 1-Acylnaphthalenes. Journal of Organic Chemistry, 2000, 65, 3200-3206.	3.2	22
232	Conformational Studies by Dynamic NMR. 76.1Stereodynamics of Ring Inversion of Bicyclo [3.3.1] nonan-9-one. Journal of Organic Chemistry, 2000, 65, 3563-3565.	3.2	12
233	Correlated Rotation of the Me3Si Groups in Tris(trimethylsilyl)methanes. Chemistry - A European Journal, 1999, 5, 3501-3508.	3.3	8
234	Conformational studies by dynamic NMR. 66. Ring inversion in a cyclic disilane: 1,1,4,4-tetramethyl-1,4-disilacyclohexane. Tetrahedron, 1998, 54, 13181-13184.	1.9	15

#	Article	IF	CITATION
235	Conformational Studies by Dynamic NMR. 65.1Interconversion of Stereolabile Meso and Racemic Diastereoisomers of Hindered 1,4-Diacylnaphthalenes. Journal of Organic Chemistry, 1998, 63, 4991-4995.	3.2	13
236	Conformational Studies by Dynamic NMR. 64.1Stereomutations of Atropisomers and of Conformational Enantiomers in Ethers of Hindered Naphthylcarbinolsâ€. Journal of Organic Chemistry, 1998, 63, 4746-4754.	3.2	20
237	Conformational Studies by Dynamic NMR. 67.1Ring Inversion, in Solution and in the Solid, of the Silane Analogue of Permethylcyclohexane:Â Dodecamethylcyclohexasilane. Journal of Organic Chemistry, 1998, 63, 9125-9127.	3.2	27
238	Conformational Studies by Dynamic NMR. 62.1Stereomutations of Rotamers and of Conformational Enantiomers in 1,2-Diacylbenzenes. Journal of Organic Chemistry, 1997, 62, 7592-7596.	3.2	19
239	Conformational Studies by Dynamic NMR. 58.1 Stereodynamics of Câ^'C and Câ^'N Rotation in Furan and Thiophene o-Amino Thioaldehydes and Aldehydes. Journal of Organic Chemistry, 1997, 62, 2263-2266.	3.2	19
240	Conformational Studies by Dynamic Nuclear Magnetic Resonance. 59.1Stereodynamics of Conformational Enantiomers in the Atropisomers of Hindered Naphthylcarbinols. Journal of Organic Chemistry, 1997, 62, 3315-3323.	3.2	35
241	Quantification of the Lewis Basicities and Nucleophilicities of 1,3,5 \hat{a} Fris(dialkylamino)benzenes. European Journal of Organic Chemistry, 0, , .	2.4	1