
Michael C Singer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2527526/publications.pdf Version: 2024-02-01

MICHAEL C SINCER

#	Article	IF	CITATIONS
1	Rapid human-induced evolution of insect–host associations. Nature, 1993, 366, 681-683.	27.8	265
2	Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3161-3176.	4.0	243
3	Quantification of host preference by manipulation of oviposition behavior in the butterfly Euphydryas editha. Oecologia, 1982, 52, 224-229.	2.0	188
4	EVOLUTION OF FOODâ€PLANT PREFERENCE IN THE BUTTERFLY <i>EUPHYDRYAS EDITHA</i> . Evolution; International Journal of Organic Evolution, 1971, 25, 383-389.	2.3	177
5	The Definition and Measurement of Oviposition Preference in Plant-Feeding Insects. Springer Series in Experimental Entomology, 1986, , 65-94.	0.7	167
6	Individual selection, kin selection, and the shifting balance in the evolution of warning colours: the evidence from butterflies. Biological Journal of the Linnean Society, 1987, 32, 337-350.	1.6	160
7	DETERMINANTS OF MULTIPLE HOST USE BY A PHYTOPHAGOUS INSECT POPULATION. Evolution; International Journal of Organic Evolution, 1983, 37, 389-403.	2.3	159
8	Extinctionâ€Colonization Dynamics and Hostâ€Plant Choice in Butterfly Metapopulations. American Naturalist, 2001, 158, 341-353.	2.1	150
9	Catastrophic Extinction of Population Sources in a Butterfly Metapopulation. American Naturalist, 1996, 148, 957-975.	2.1	139
10	Overstretching attribution. Nature Climate Change, 2011, 1, 2-4.	18.8	137
11	Evolutionary Responses of a Butterfly Metapopulation to Human- and Climate-Caused Environmental Variation. American Naturalist, 1996, 148, S9-S39.	2.1	135
12	Dispersal and Gene Flow in a Butterfly Species. American Naturalist, 1973, 107, 58-72.	2.1	121
13	LOCAL SPECIALIZATION AND LANDSCAPE-LEVEL INFLUENCE ON HOST USE IN AN HERBIVOROUS INSECT. Ecology, 2000, 81, 2177-2187.	3.2	114
14	Field Studies Reveal Strong Postmating Isolation between Ecologically Divergent Butterfly Populations. PLoS Biology, 2010, 8, e1000529.	5.6	92
15	Sources of variations in patterns of plant–insect association. Nature, 1993, 361, 251-253.	27.8	91
16	Lethal trap created by adaptive evolutionary response to an exotic resource. Nature, 2018, 557, 238-241.	27.8	89
17	Determinants of Multiple Host Use by a Phytophagous Insect Population. Evolution; International Journal of Organic Evolution, 1983, 37, 389.	2.3	84
18	Pre- and post-alighting host discrimination by Euphydryas editha butterflies: The behavioural mechanisms causing clumped distributions of egg clusters. Animal Behaviour, 1981, 29, 1220-1228.	1.9	79

MICHAEL C SINGER

#	Article	IF	CITATIONS
19	REPEATED REVERSALS OF HOSTâ€PREFERENCE EVOLUTION IN A SPECIALIST INSECT HERBIVORE. Evolution; International Journal of Organic Evolution, 1995, 49, 351-359.	2.3	72
20	When random sampling does not work: standard design falsely indicates maladaptive host preferences in a butterfly. Ecology Letters, 2002, 5, 1-6.	6.4	60
21	Human–nature connectedness as a pathway to sustainability: A global metaâ€analysis. Conservation Letters, 2022, 15, e12852.	5.7	59
22	Quinolizidine alkaloids obtained byPedicularis semibarbata (Scrophulariaceae) fromLupinus fulcratus (Leguminosae) fail to influence the specialist herbivoreEuphydryas editha (Lepidoptera). Journal of Chemical Ecology, 1989, 15, 2521-2530.	1.8	58
23	Absence of adaptive learning from the oviposition foraging behaviour of a checkerspot butterfly. Animal Behaviour, 1995, 50, 161-175.	1.9	56
24	Correlates of speed of evolution of host preference in a set of twelve populations of the butterfly <i>Euphydryas editha</i> . Ecoscience, 1994, 1, 107-114.	1.4	53
25	Spatial and temporal patterns of caterpillar performance and the suitability of two host plant species. Ecological Entomology, 2003, 28, 193-202.	2.2	52
26	Geographic mosaics of phenology, host preference, adult size and microhabitat choice predict butterfly resilience to climate warming. Oikos, 2015, 124, 41-53.	2.7	52
27	MULTITRAIT, HOST-ASSOCIATED DIVERGENCE AMONG SETS OF BUTTERFLY POPULATIONS: IMPLICATIONS FOR REPRODUCTIVE ISOLATION AND ECOLOGICAL SPECIATION. Evolution; International Journal of Organic Evolution, 2010, 64, 921-933.	2.3	49
28	Effects of maternal age and adult diet on egg weight in the butterfly <i>Euphydryas editha</i> . Ecological Entomology, 1987, 12, 401-408.	2.2	48
29	Capture does affect probability of recapture in a butterfly species. Ecological Entomology, 1981, 6, 215-216.	2.2	45
30	Geographic mosaics of species' association: a definition and an example driven by plant–insect phenological synchrony. Ecology, 2012, 93, 2658-2673.	3.2	45
31	Endangered Quino checkerspot butterfly and climate change: Short-term success but long-term vulnerability?. Journal of Insect Conservation, 2015, 19, 185-204.	1.4	45
32	The basis of an apparent preference for isolated host plants by ovipositing Euptychia libye butterflies. Ecological Entomology, 1982, 7, 299-303.	2.2	44
33	Discrimination within and between host species by a butterfly: implications for design of preference experiments. Ecology Letters, 2000, 3, 101-105.	6.4	41
34	Inbreeding depression and the maintenance of genetic load in Melitaea cinxia metapopulations. Conservation Genetics, 2001, 2, 325-335.	1.5	34
35	Contrasting the roles of learning in butterflies foraging for nectar and oviposition sites. Animal Behaviour, 2001, 61, 847-852.	1.9	29
36	Hostâ€associated genomic differentiation in congeneric butterflies: now you see it, now you do not. Molecular Ecology, 2013, 22, 4753-4766.	3.9	24

MICHAEL C SINGER

#	Article	IF	CITATIONS
37	Rapid Natural and Anthropogenic Diet Evolution: Three Examples from Checkerspot Butterflies. , 2008, , 311-324.		22
38	On the failure of two butterfly species to respond to the presence of conspecific eggs prior to oviposition. Ecological Entomology, 1982, 7, 327-330.	2.2	21
39	Does fecundity drive the evolution of insect diet?. Oikos, 2000, 88, 533-538.	2.7	21
40	Protandry and postandry in two related butterflies: conflicting evidence about sex-specific trade-offs between adult size and emergence time. Evolutionary Ecology, 2008, 22, 701-709.	1.2	21
41	Colonizations cause diversification of host preferences: A mechanism explaining increased generalization at range boundaries expanding under climate change. Global Change Biology, 2021, 27, 3505-3518.	9.5	20
42	Genetic, ecological, behavioral and geographic differentiation of populations in a thistle weevil: implications for speciation and biocontrol. Evolutionary Applications, 2008, 1, 112-128.	3.1	19
43	Butterflies embrace maladaptation and raise fitness in colonizing novel host. Evolutionary Applications, 2019, 12, 1417-1433.	3.1	18
44	Adaptive and maladaptive consequences of "matching habitat choice:―lessons from a rapidly-evolving butterfly metapopulation. Evolutionary Ecology, 2015, 29, 905-925.	1.2	15
45	Variation in heat shock protein expression at the latitudinal range limits of a widelyâ€distributed species, the <scp>G</scp> lanville fritillary butterfly (<i><scp>M</scp>elitaea cinxia</i>). Physiological Entomology, 2016, 41, 241-248.	1.5	15
46	Mosaics of climatic stress across species' ranges: tradeoffs cause adaptive evolution to limits of climatic tolerance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210003.	4.0	15
47	Variation among individual butterflies along a generalist?specialist axis: no support for the ?neural constraint? hypothesis. Ecological Entomology, 2007, 32, 257-261.	2.2	14
48	Shifts in time and space interact as climate warms. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12848-12850.	7.1	9
49	Takeoff temperatures in <i>Melitaea cinxia</i> butterflies from latitudinal and elevational range limits: a potential adaptation to solar irradiance. Ecological Entomology, 2019, 44, 389-396.	2.2	9
50	Preference Provides a Plethora of Problems (Don't Panic). Annual Review of Entomology, 2021, 66, 1-22.	11.8	9
51	Model vs. experiment to predict crop losses. Science, 2018, 362, 1122-1122.	12.6	5
52	The importance of eco-evolutionary dynamics for predicting and managing insect range shifts. Current Opinion in Insect Science, 2022, 52, 100939.	4.4	4
53	Attraction of <i>Melitaea cinxia</i> Butterflies to Previously-Attacked Hosts: A Likely Complement to Known Allee Effects?. Annales Zoologici Fennici, 2017, 54, 205-211.	0.6	2