Fumio Kanehiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2527436/publications.pdf

Version: 2024-02-01

184 papers 6,568 citations

361413 20 h-index 289244 40 g-index

189 all docs

189
docs citations

times ranked

189

2281 citing authors

#	Article	IF	CITATIONS
1	Centroidal Trajectory Generation and Stabilization Based on Preview Control for Humanoid Multi-Contact Motion. IEEE Robotics and Automation Letters, 2022, 7, 8225-8232.	5.1	8
2	Planning Grasps With Suction Cups and Parallel Grippers Using Superimposed Segmentation of Object Meshes. IEEE Transactions on Robotics, 2021, 37, 166-184.	10.3	31
3	Benchmarking Cameras for Open VSLAM Indoors. , 2021, , .		6
4	Humanoid Loco-Manipulation Planning Based on Graph Search and Reachability Maps. IEEE Robotics and Automation Letters, 2021, 6, 1840-1847.	5.1	14
5	Multi-Contact Locomotion Planning With Bilateral Contact Forces Considering Kinematics and Statics During Contact Transition. IEEE Robotics and Automation Letters, 2021, 6, 6654-6661.	5.1	5
6	Rapid Pose Label Generation through Sparse Representation of Unknown Objects., 2021,,.		2
7	Humanoid Loco-Manipulations Pattern Generation and Stabilization Control. IEEE Robotics and Automation Letters, 2021, 6, 5597-5604.	5.1	10
8	On compliance and safety with torque-control for robots with high reduction gears and no joint-torque feedback. , 2021, , .		3
9	Visual SLAM Framework Based on Segmentation with the Improvement of Loop Closure Detection in Dynamic Environments. Journal of Robotics and Mechatronics, 2021, 33, 1385-1397.	1.0	3
10	Preparatory Manipulation Planning Using Automatically Determined Single and Dual Arm. IEEE Transactions on Industrial Informatics, 2020, 16, 442-453.	11.3	24
11	An inverse dynamics-based multi-contact locomotion control framework without joint torque feedback. Advanced Robotics, 2020, 34, 1398-1419.	1.8	5
12	Lyapunov-Stable Orientation Estimator for Humanoid Robots. IEEE Robotics and Automation Letters, 2020, 5, 6371-6378.	5.1	7
13	Multi-Contact Locomotion Planning for Humanoid Robot Based on Sustainable Contact Graph With Local Contact Modification. IEEE Robotics and Automation Letters, 2020, 5, 6379-6387.	5.1	6
14	Re-posing Objects Considering Bipedal Stability Constraints: An Approach for Stability Preservation During Humanoid Manipulation. International Journal of Humanoid Robotics, 2020, 17, 2050005.	1.1	2
15	Sequential Trajectory Generation for Dynamic Multi-Contact Locomotion Synchronizing Contact. International Journal of Humanoid Robotics, 2020, 17, 2050003.	1.1	3
16	Multi-purpose SLAM framework for Dynamic Environment. , 2020, , .		4
17	Guest Editorial of Special Issue on New Advances of Humanoid Robotics for "2018 IEEE-RAS International Conference on Humanoid Robots― International Journal of Humanoid Robotics, 2020, 17, 2002001.	1.1	O
18	On-Site Locomotion Planning for a Humanoid Robot with Stable Whole-Body Collision Avoidance Motion Guided by Footsteps and Centroidal Trajectory. International Journal of Humanoid Robotics, 2020, 17, 1950035.	1.1	1

#	Article	IF	Citations
19	Guest Editorial of Special Issue on New Advances of Humanoid Robotics for "2018 IEEE-RAS International Conference on Humanoid Robots― International Journal of Humanoid Robotics, 2020, 17, 2002002.	1.1	0
20	Instance-specific 6-DoF Object Pose Estimation from Minimal Annotations., 2020,,.		1
21	Easy Pose Annotation of Real RGB-D Data for Known Objects. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2020, 2020, 2P2-J05.	0.0	0
22	Reliable chattering-free simulation of friction torque in joints presenting high stiction. , 2020, , .		3
23	Humanoid Robots in Aircraft Manufacturing: The Airbus Use Cases. IEEE Robotics and Automation Magazine, 2019, 26, 30-45.	2.0	57
24	Toward Industrialization of Humanoid Robots: Autonomous Plasterboard Installation to Improve Safety and Efficiency. IEEE Robotics and Automation Magazine, 2019, 26, 20-29.	2.0	7
25	Humanoid Robot HRP-5P: An Electrically Actuated Humanoid Robot With High-Power and Wide-Range Joints. IEEE Robotics and Automation Letters, 2019, 4, 1431-1438.	5.1	100
26	Simulator for Disaster Response Robotics. Springer Tracts in Advanced Robotics, 2019, , 453-477.	0.4	4
27	Dual-Arm Construction Robot with Remote-Control Function. Springer Tracts in Advanced Robotics, 2019, , 195-264.	0.4	10
28	Toward 6 DOF Object Pose Estimation with Minimum Dataset. , 2019, , .		4
29	Multi-Contact Stabilization of a Humanoid Robot for Realizing Dynamic Contact Transitions on Non-coplanar Surfaces. , 2019 , , .		10
30	QP-based task-space hybrid / parallel control for multi-contact motion in a torque-controlled humanoid robot. , 2019, , .		6
31	Position-Based Lateral Balance Control for Knee-Stretched Biped Robot. , 2019, , .		9
32	Bipedal Locomotion Planning for a Humanoid Robot Supported by Arm Contacts Based on Geometrical Feasibility. , 2019, , .		5
33	Whole-Body Motion Planning. , 2019, , 1575-1599.		1
34	Robust SLAM based on Segmentation of Dynamic Object's Point Cloud. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2019, 2019, 2A1-R07.	0.0	0
35	Development of Robot Simulator. Journal of the Robotics Society of Japan, 2019, 37, 835-838.	0.1	0
36	Redundant Strain Measurement of Link Structures for Improved Stability of Light Weight Torque Controlled Robots. , $2018, \ldots$		0

#	Article	IF	CITATIONS
37	Efficient Locomotion Planning for a Humanoid Robot with Whole-Body Collision Avoidance Guided by Footsteps and Centroidal Sway Motion. , 2018 , , .		9
38	Partial Yaw Moment Compensation Using an Optimization-Based Multi-Objective Motion Solver. , 2018, , .		3
39	Online 3D CoM Trajectory Generation for Multi-Contact Locomotion Synchronizing Contact. , 2018, , .		5
40	Biped Gait Control Based on Spatially Quantized Dynamics. , 2018, , .		6
41	Regrasp Planning Considering Bipedal Stability Constraints. , 2018, , .		3
42	Robust Humanoid Control Using a QP Solver with Integral Gains. , 2018, , .		13
43	Perception Based Locomotion System for a Humanoid Robot with Adaptive Footstep Compensation under Task Constraints. , $2018, \ldots$		8
44	Model-Based External Force/Moment Estimation for Humanoid Robots with no Torque Measurement. , 2018, , .		13
45	Detecting Errors in a Humanoid Robot. , 2018, , .		1
46	On prioritized inverse kinematics tasks: Time-space decoupling. , 2018, , .		3
47	Wide Viewing Angle Vision Sensor Simulation Function of Robot Simulator Choreonoid. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2018, 2018, 2A1-L01.	0.0	O
48	Developing semi-autonomous humanoid robots that perform various composite tasks via a task sequencer and dynamics simulator. , 2017, , .		1
49	Quick squatting motion generation of a humanoid robot for falling damage reduction. , 2017, , .		2
50	Biped walking pattern generation based on spatially quantized dynamics. , 2017, , .		27
51	Complementary integration framework for localization and recognition of a humanoid robot based on task-oriented frequency and accuracy requirements. , 2017, , .		6
52	Development of a Natural Phenomenon Rendering Function of Robot Simulator Choreonoid. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2017, 2017, 2A1-Q11.	0.0	0
53	ImPACT-TRC Simulator Research Group. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2017, 2017, 2A1-Q12.	0.0	0
54	Whole-Body Motion Planning. , 2017, , 1-26.		0

#	Article	IF	CITATIONS
55	Stable simulation of flexible cable-like objects by using serial kinematic chains with high number of passive degrees-of-freedom. , 2016 , , .		1
56	Enabling a teleoperated humanoid robot to pass through debris-filled terrain using manipulation. , 2016, , .		1
57	Impact acceleration of falling humanoid robot with an airbag. , $2016,$, .		24
58	Effective teleoperated manipulation for humanoid robots in partially unknown real environments: team AIST-NEDO's approach for performing the Plug Task during the DRC Finals. Advanced Robotics, 2016, 30, 1544-1558.	1.8	9
59	Development and Lessons Learned in DARPA Robotics Challenge Finals. Journal of the Robotics Society of Japan, 2016, 34, 360-365.	0.1	2
60	Multi-contact vertical ladder climbing with an HRP-2 humanoid. Autonomous Robots, 2016, 40, 561-580.	4.8	79
61	ééš"æ"作ã«ã,^ã,‹ç½å®³å¯¾å¿œãƒ'ューマノã,∰‱ãƒãƒœãƒƒãƒ^HRP-2æ"1. IEICE Communications S	oci ety)Ma	gaz i ne, 2016,
62	Field-of-view Image Simulation Function of the Disaster Response Robot Simulator "Choreonoid― The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2016, 2016, 1A2-08b6.	0.0	1
63	ROS integration of the disaster response robot simulator "Choreonoid― The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2016, 2016, 1A2-10a1.	0.0	1
64	Infeasibility-free inverse kinematics method. , 2015, , .		3
65	Development of Sensor System Built into a Robot Hand toward Environmental Monitoring. Journal of the Robotics Society of Japan, 2015, 33, 253-262.	0.1	1
66	Task sequencer integrated into a teleoperation interface for biped humanoid robots., 2015,,.		14
67	Modeling dynamic scenes by one-shot 3D acquisition system for moving humanoid robot. , 2015, , .		О
68	Humanoid robot HRP-2Kai — Improvement of HRP-2 towards disaster response tasks. , 2015, , .		59
69	Task-level teleoperated manipulation for the HRP-2Kai humanoid robot. , 2015, , .		10
70	Vertical ladder climbing by the HRP-2 humanoid robot. , 2014, , .		31
71	Biped locomotion control for uneven terrain with narrow support region. , 2014, , .		21
72	Development of an indirect-type teleoperation interface for biped humanoid robots., 2014,,.		10

#	Article	IF	CITATIONS
73	Asâ€Conformalâ€Asâ€Possible Surface Registration. Computer Graphics Forum, 2014, 33, 257-267.	3.0	23
74	Efficient reaching motion planning method for low-level autonomy of teleoperated humanoid robots. Advanced Robotics, 2014, 28, 433-439.	1.8	9
75	Vertical vibration suppression for a position controlled biped robot. , 2013, , .		8
76	Slip-Turn for Biped Robots. IEEE Transactions on Robotics, 2013, 29, 875-887.	10.3	21
77	Humanoid robot as an evaluator of assistive devices. , 2013, , .		32
78	Optimization and Imitation Problems for Humanoid Robots. Cognitive Systems Monographs, 2013, , 233-247.	0.1	0
79	Obstacle detection for a bipedal walking robot by a fisheye stereo. , 2013, , .		9
80	Foot landing state estimation from point cloud at a landing place. , 2013, , .		6
81	Recognizing clothing states using 3D data observed from multiple directions. , 2013, , .		3
82	2P1-A05 Qualitative Evaluation of Effect of Assistive Device by a Humanoid(Humanoid). The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2013, 2013, _2P1-A05_12P1-A05_4.	0.0	0
83	3D shape measurement of a large cloth close to a fisheye stereo. , 2012, , .		4
84	Efficient reaching motion planning and execution for exploration by humanoid robots. , 2012, , .		15
85	Evaluation of a stabilizer for biped walk with toe support phase. , 2012, , .		3
86	Balance control based on Capture Point error compensation for biped walking on uneven terrain. , 2012, , .		70
87	Quick slip-turn of HRP-4C on its toes. , 2012, , .		6
88	Disturbance observer that estimates external force acting on humanoid robots. , 2012, , .		22
89	Reactive biped walking control for a collision of a swinging foot on uneven terrain. , 2011, , .		29
90	Humanoid robot that achieves bipedal walk, visual recognition, and multiple finger grasp. , $2011, \ldots$		2

#	Article	IF	Citations
91	Hardware improvement of Cybernetic Human HRP-4C for entertainment use., 2011,,.		32
92	Clothes handling based on recognition by strategic observation. , 2011, , .		30
93	Humanoid robot HRP-4 - Humanoid robotics platform with lightweight and slim body. , 2011, , .		166
94	Reactive robot motion using path replanning and deformation. , 2011, , .		28
95	Enhancing Zero Moment Point-Based Control Model: System Identification Approach. Advanced Robotics, 2011, 25, 427-446.	1.8	15
96	Hardware improvement of cybernetic human HRP-4C for entertainment use., 2011,,.		6
97	Human-like walking with toe supporting for humanoids. , 2011, , .		50
98	2P1-K14 OpenRTM Real-time Software Development Support and Hardware System Development Support Tools:3rd Report(RT Middleware and Open System). The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2011, 2011, _2P1-K14_12P1-K14_2.	0.0	0
99	Toward the use of humanoid robots as assemblies of content technologies. Synthesiology, 2011, 4, 87-98.	0.2	4
100	Online Motion Planning using Path Deformation and Replanning. Journal of the Robotics Society of Japan, 2011, 29, 716-725.	0.1	1
101	Generating dynamically stable walking patterns for humanoid robots using quadratic system model. , 2010, , .		1
102	Combining suppression of the disturbance and reactive stepping for recovering balance. , 2010, , .		38
103	Analysis on a friction based & amp; #x201C; twirl & amp; #x201D; for biped robots., 2010,,.		15
104	Integrating geometric constraints into reactive leg motion generation. , 2010, , .		22
105	Time Parameterization of Humanoid-Robot Paths. IEEE Transactions on Robotics, 2010, 26, 458-468.	10.3	13
106	Biped walking stabilization based on linear inverted pendulum tracking. , 2010, , .		301
107	Trials of cybernetic human HRP-4C toward humanoid business. , 2010, , .		8
108	Grasp Planning for a Multifingered Hand with a Humanoid Robot. Journal of Robotics and Mechatronics, 2010, 22, 230-238.	1.0	25

#	Article	IF	Citations
109	Reactive Leg Motion Generation Method under Consideration of Physical Constraints. Journal of the Robotics Society of Japan, 2010, 28, 1251-1261.	0.1	6
110	Toward human-like walking pattern generator., 2009,,.		33
111	Robot motion remix based on motion capture data towards human-like locomotion of humanoid robots. , 2009, , .		53
112	Cybernetic human HRP-4C., 2009,,.		160
113	Improving ZMP-based control model using system identification techniques. , 2009, , .		8
114	Feasible pattern generation method for humanoid robots., 2009,,.		23
115	Prioritizing linear equality and inequality systems: Application to local motion planning for redundant robots., 2009,,.		79
116	Humanoid robot HRP-3., 2008,,.		225
117	Fast grasp planning for hand/arm systems based on convex model. , 2008, , .		27
118	Cheek to Chip: Dancing Robots and Al's Future. IEEE Intelligent Systems, 2008, 23, 74-84.	4.0	45
119	Selecting a suitable grasp motion for humanoid robots with a multi-fingered hand. , 2008, , .		2
120	On human motion imitation by humanoid robot. , 2008, , .		99
121	Integrating dynamics into motion planning for humanoid robots. , 2008, , .		13
122	Development of Humanoid Robot "HRP-3". Journal of the Robotics Society of Japan, 2008, 26, 658-666.	0.1	8
123	Motion Generation of Emergency Stop at Double Support Phase for Humanoid Robot by Pole Assignment. Journal of the Robotics Society of Japan, 2008, 26, 341-350.	0.1	2
124	Real-time Ethernet. Journal of the Robotics Society of Japan, 2008, 26, 148-151.	0.1	0
125	Map Building and Whole Body Locomotion Planning of Humanoid Robots —3D Occupancy Grid Map—. Journal of the Robotics Society of Japan, 2008, 26, 326-329.	0.1	2
126	Development of Multi-fingered Hand for Life-size Humanoid Robots. Journal of the Robotics Society of Japan, 2008, 26, 98-109.	0.1	7

#	Article	IF	CITATIONS
127	Online object search with a humanoid robot., 2007,,.		25
128	Constraint-based dynamics simulator for humanoid robots with shock absorbing mechanisms. , 2007, , .		66
129	An optimal planning of falling motions of a humanoid robot. , 2007, , .		42
130	Getting up Motion Planning using Mahalanobis Distance. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	6
131	A Pattern Generator of Humanoid Robots Walking on a Rough Terrain. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	59
132	Learning from Observation Paradigm: Leg Task Models for Enabling a Biped Humanoid Robot to Imitate Human Dances. International Journal of Robotics Research, 2007, 26, 829-844.	8.5	124
133	Real-Time Planning of Humanoid Robot's Gait for Force-Controlled Manipulation. IEEE/ASME Transactions on Mechatronics, 2007, 12, 53-62.	5.8	66
134	Experimentation of Humanoid Walking Allowing Immediate Modification of Foot Place Based on Analytical Solution. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	44
135	Field and service appkications - Dinosaur robotics for entertainment applications - Design, Configurations, Controt, and Exhibition at the World Exposition. IEEE Robotics and Automation Magazine, 2007, 14, 43-51.	2.0	12
136	Development of Multi-fingered Hand for Life-size Humanoid Robots. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	61
137	Whole Body Locomotion Planning of Humanoid Robots based on a 3D Grid Map. Journal of the Robotics Society of Japan, 2007, 25, 589-597.	0.1	5
138	Distributed I/O System for Humanoid Robots based on Real-time Ethernet. Journal of the Robotics Society of Japan, 2007, 25, 466-477.	0.1	0
139	Biped Walking Pattern Generator allowing Auxiliary ZMP Control. , 2006, , .		128
140	A Biped Pattern Generation Allowing Immediate Modification of Foot Placement in Real-time. , 2006, , .		41
141	Towards an Optimal Falling Motion for a Humanoid Robot. , 2006, , .		53
142	Motion Planning of Emergency Stop for Humanoid Robot by State Space Approach., 2006,,.		16
143	Distributed Control System of Humanoid Robots based on Real-time Ethernet., 2006,,.		32
144	Motion Suspension System for Humanoids in case of Emergency; Real-time Motion Generation and Judgment to suspend Humanoid. , 2006, , .		11

#	Article	IF	CITATIONS
145	Leg Task Models for Reproducing Human Dance Motions on Biped Humanoid Robots. Journal of the Robotics Society of Japan, 2006, 24, 388-399.	0.1	11
146	Integration of Manipulation and Locomotion by a Humanoid Robot. Springer Tracts in Advanced Robotics, 2006, , 187-197.	0.4	2
147	Task model of lower body motion for a biped humanoid robot to imitate human dances. , 2005, , .		71
148	A Switching Command-Based Whole-Body Operation Method for Humanoid Robots. IEEE/ASME Transactions on Mechatronics, 2005, 10, 546-559.	5.8	34
149	Emergency stop algorithm for walking humanoid robots. , 2005, , .		32
150	Analytical Approach on Real-time Gait Planning for a Humanoid Robot. Journal of the Robotics Society of Japan, 2005, 23, 752-760.	0.1	15
151	A Human-size Humanoid Robot that can Fall over Backwards Safely. Journal of the Robotics Society of Japan, 2005, 23, 427-434.	0.1	0
152	ZMP Analysis of a Humanoid Robot under Coordination of Arms and Legs. Journal of the Robotics Society of Japan, 2004, 22, 28-36.	0.1	7
153	Humanoid robot HRP-2., 2004, , .		553
154	Locomotion planning of humanoid robots to pass through narrow spaces. , 2004, , .		43
154 155	Locomotion planning of humanoid robots to pass through narrow spaces., 2004,,. Falling motion control of a humanoid robot trained by virtual supplementary tests., 2004,,.		43
		5.1	
155	Falling motion control of a humanoid robot trained by virtual supplementary tests. , 2004, , .	5.1	33
155 156	Falling motion control of a humanoid robot trained by virtual supplementary tests., 2004, , . Humanoid robotics platforms developed in HRP. Robotics and Autonomous Systems, 2004, 48, 165-175.	5.1	120
155 156 157	Falling motion control of a humanoid robot trained by virtual supplementary tests., 2004,,. Humanoid robotics platforms developed in HRP. Robotics and Autonomous Systems, 2004, 48, 165-175. Real-time planning of humanoid robot's gait for force controlled manipulation., 2004,,.		33 120 57
155 156 157 158	Falling motion control of a humanoid robot trained by virtual supplementary tests., 2004, , . Humanoid robotics platforms developed in HRP. Robotics and Autonomous Systems, 2004, 48, 165-175. Real-time planning of humanoid robot's gait for force controlled manipulation., 2004, , . Humanoid Robot that can Lie down and Get up. Journal of the Robotics Society of Japan, 2004, 22, 37-45. Walking Motion for Pushing Manipulation by a Humanoid Robot. Journal of the Robotics Society of	0.1	33 120 57 3
155 156 157 158	Falling motion control of a humanoid robot trained by virtual supplementary tests., 2004, , . Humanoid robotics platforms developed in HRP. Robotics and Autonomous Systems, 2004, 48, 165-175. Real-time planning of humanoid robot's gait for force controlled manipulation., 2004, , . Humanoid Robot that can Lie down and Get up. Journal of the Robotics Society of Japan, 2004, 22, 37-45. Walking Motion for Pushing Manipulation by a Humanoid Robot. Journal of the Robotics Society of Japan, 2004, 22, 392-399. Resolved Momenutm Control: Motion Generation of a Humanoid Robot based on the Linear and	0.1	33 120 57 3

#	Article	IF	CITATIONS
163	Biped walking pattern generation by a simple three-dimensional inverted pendulum model. Advanced Robotics, 2003, 17, 131-147.	1.8	147
164	Experimental Study of Biped Locomotion of Humanoid Robot HRP-1S., 2003, , 75-84.		11
165	Development of Humanoid Robotics Platform HRP-2. Research & Development of HRP-2 Leg Module and its Basic Experiments Journal of the Robotics Society of Japan, 2003, 21, 201-211.	0.1	3
166	Open Architecture Humanoid Robotics Platform: OpenHRP. Journal of the Robotics Society of Japan, 2003, 21, 785-793.	0.1	2
167	Open Architecture Humanoid Robotics Platform "OpenHRP―and its Application. Journal of the Robotics Society of Japan, 2003, 21, 609-614.	0.1	4
168	A Collision Avoidance Algorithm of Humanoid Robots that can be used together with a Balance Controller. Journal of the Robotics Society of Japan, 2003, 21, 639-646.	0.1	0
169	StateNet: State Transition Graph Description of Action Space that Includes Error Recovery Function Journal of the Robotics Society of Japan, 2002, 20, 835-843.	0.1	2
170	Humanoid robot simulator for the METI HRP Project. Robotics and Autonomous Systems, 2001, 37, 101-114.	5.1	11
171	Distributed Robot Integration Based on Mobile Agent Architecture that Aims Supporting a Specific User Continuously on the Network Environment Journal of the Robotics Society of Japan, 2000, 18, 1034-1039.	0.1	0
172	Extending humanoid mobility with a skating tool based on an on-line motion adjusting system. Advanced Robotics, 1999, 13, 347-348.	1.8	0
173	Extending humanoid mobility with a skating tool based on an on-line motion adjusting system. Advanced Robotics, 1998, 13, 347-348.	1.8	0
174	Vision-based adaptive and interactive behaviors in mechanical animals using the remote-brained approach. Robotics and Autonomous Systems, 1996, 17, 35-52.	5.1	32
175	Remote-brained ape-like robot to study full-body mobile behaviors based on simulated models and real-time vision. Advanced Robotics, 1996, 11, 653-668.	1.8	3
176	Biped walking pattern generation by using preview control of zero-moment point., 0,,.		1,325
177	Whole body teleoperation of a humanoid robot - a method of integrating operator's intention and robot's autonomy. , 0 , , .		17
178	The first humanoid robot that has the same size as a human and that can lie down and get up., 0,,.		39
179	Experimental evaluation of the dynamic simulation of biped walking of humanoid robots. , 0, , .		14
180	Distributed Real-Time Processing for Humanoid Robots. , 0, , .		15

#	ARTICLE	IF	CITATIONS
181	A universal stability criterion of the foot contact of legged robots - adios ZMP. , 0, , .		114
182	A Local Collision Avoidance Method for Non-strictly Convex Polyhedra. , 0, , .		35
183	Grasp Planning for a Humanoid Hand., 0, , .		0
184	OpenHRP: Open Architecture Humanoid Robotics Platform. , 0, , 99-112.		107