Wojciech Nitek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2527211/publications.pdf

Version: 2024-02-01

		279798	361022
133	1,936	23	35
papers	citations	h-index	g-index
138	138	138	1984
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multifunctional Magnetic Molecular {[Mn ^I urea ₂ System: Magnetization-Induced SHG in the Chiral Polymorph. Chemistry of Materials, 2011, 23, 21-31.]}& <i>s</i> ub>n<	:/ s. &>
2	Double Switching of a Magnetic Coordination Framework through Intraskeletal Molecular Rearrangement. Angewandte Chemie - International Edition, 2011, 50, 3973-3977.	13.8	79
3	High <i>T</i> _c Ferrimagnetic Organicâ^'Inorganic Hybrid Materials with Mn ^{II} â^'Lâ^'Mn ^{II} and Mn ^{II} â^'NCâ^'Nb ^{IV} Linkages (L = Pyrazine,)	Ђ . БТQq1	170.784 31 <u>4</u>
4	Co–NC–W and Fe–NC–W Electronâ€Transfer Channels for Thermal Bistability in Trimetallic {Fe ₆ Co ₃ [W(CN) ₈] ₆ } Cyanidoâ€Bridged Cluster. Angewandte Chemie - International Edition, 2013, 52, 896-900.	13.8	68
5	Nature of Magnetic Interactions in 3D {[M ^{IV} (CN) _{3ê.4H₂[Nb^{IV}(CN)₈]Â.4H_{2<td>ıb4.0}<sul< td=""><td>ว:5&i>n</td></sul<></td>}}	ıb 4.0 } <sul< td=""><td>ว:5&i>n</td></sul<>	ว :5&i >n
6	Natural and magnetic optical activity of 2-D chiral cyanido-bridged MnII–NbIV molecular ferrimagnets. Chemical Communications, 2013, 49, 6731.	4.1	55
7	Charge transfer phase transition with reversed thermal hysteresis loop in the mixed-valence Fe9[W(CN)8]6·xMeOH cluster. Chemical Communications, 2014, 50, 3484.	4.1	41
8	Iron(II)-octacyanoniobate(IV) ferromagnet with TC 43 K. Dalton Transactions, 2009, , 7771.	3.3	39
9	Hydration-switchable charge transfer in the first bimetallic assembly based on the [Ni(cyclam)] ³⁺ – magnetic CN-bridged chain {(H ₃ O)[Ni ^{III} (cyclam)][Fe ^{II} (CN) ₆]·5H ₂ O}Chemical Communications. 2015. 51. 11485-11488.	n.	38
10	Testing the High Spin MnII9WV6 Cluster as Building Block for Three-Dimensional Coordination Networks. Crystal Growth and Design, 2008, 8, 3817-3821.	3.0	36
11	Evidence for magnetic anisotropy of [NbIV(CN)8]4â^ in a pillared-layered Mn2Nb framework showing spin-flop transition. Chemical Communications, 2012, 48, 8323.	4.1	33
12	Supramolecular Chains and Coordination Nanowires Constructed of High-Spin Co ^{II} ₉ W ^V ₆ Clusters and 4,4′-bpdo Linkers. Crystal Growth and Design, 2013, 13, 3036-3045.	3.0	33
13	The 5-aromatic hydantoin-3-acetate derivatives as inhibitors of the tumour multidrug resistance efflux pump P-glycoprotein (ABCB1): Synthesis, crystallographic and biological studies. Bioorganic and Medicinal Chemistry, 2016, 24, 2815-2822.	3.0	33
14	CFA-2 and CFA-3 (Coordination Framework Augsburg University-2 and -3); novel MOFs assembled from trinuclear Cu(i)/Ag(i) secondary building units and 3,3′,5,5′-tetraphenyl-bipyrazolate ligands. Dalton Transactions, 2013, 42, 6909.	3.3	32
15	Photo-induced magnetic properties of the [Cu ^{II(bapa) Sub>2[Mo^{IV}(CN)₈]Â-7H₂Omble to the control of the control of}	5.5	31
16	{MnII9WV6}nNanowires Organized into Three-Dimensional Hybrid Network of I1O2Topology. Crystal Growth and Design, 2010, 10, 4693-4696.	3.0	30
17	Implementation of Chirality into High-Spin Ferromagnetic Co ^{II} ₉ W ^V ₆ and Ni ^{II} ₉ W ^V ₆ Cyanido-Bridged Clusters. Crystal Growth and Design, 2015, 15, 3573-3581.	3.0	29
18	Larger pores and higher T _c : {[Ni(cyclam)] ₃ [W(CN) ₈] ₂ ·solv} _n â€" a new member of the largest family of pseudo-polymorphic isomers among octacyanometallate-based assemblies. CrystEngComm, 2015, 17, 3526-3532.	2.6	29

#	Article	IF	CITATIONS
19	Magnetic Properties versus Network Dimensionality of Cerium(III) Octacyanotungstate(V) Compounds. Inorganic Chemistry, 2010, 49, 4268-4277.	4.0	28
20	Assemblies of substituted salicylidene-2-ethanolamine copper(II) complexes: From square planar monomeric to octahedral polymeric halogen analogues. Polyhedron, 2013, 49, 74-83.	2.2	28
21	Optical Activity and Dehydration-Driven Switching of Magnetic Properties in Enantiopure Cyanido-Bridged Co ^{II} ₃ W ^V ₂ Trigonal Bipyramids. Inorganic Chemistry, 2015, 54, 5784-5794.	4.0	27
22	Influence of octacyanoniobate(IV)-bridging geometry on Tc in Mn2Nb ferrimagnets of identical 3D topology. Inorganica Chimica Acta, 2008, 361, 3957-3962.	2.4	26
23	Comparative study on Cd(II) and Ca(II) model complexes with pyridine-2,3-dicarboxylic acid: Synthesis, crystal structure and spectroscopic investigation. Polyhedron, 2010, 29, 1191-1200.	2.2	25
24	Humidity-Driven Reversible Transformation and Guest Inclusion in a Two-Dimensional Coordination Framework Tailored by Organic Polyamine Cation. Crystal Growth and Design, 2011, 11, 3866-3876.	3.0	25
25	A water sensitive ferromagnetic [Ni(cyclam)] ₂ [Nb(CN) ₈] network. Dalton Transactions, 2013, 42, 2616-2621.	3.3	24
26	Spacer-Dependent Structural and Physicochemical Diversity in Copper(II) Complexes with Salicyloyl Hydrazones: A Monomer and Soluble Polymers. Inorganic Chemistry, 2011, 50, 3501-3510.	4.0	23
27	Pronounced activity of aromatic selenocyanates against multidrug resistant ESKAPE bacteria. New Journal of Chemistry, 2019, 43, 6021-6031.	2.8	23
28	Assemblies of salen-type oxidovanadium(<scp>iv</scp>) complexes: substituent effects and in vitro protein tyrosine phosphatase inhibition. Dalton Transactions, 2014, 43, 17044-17053.	3. 3	22
29	Dynamic 2D manganese(ii) isonicotinate framework with reversible crystal-to-amorphous transformation and selective guest adsorption. CrystEngComm, 2014, 16, 4959.	2.6	21
30	Role of Pyrazine- <i>N,N</i> ′-dioxide in [W(CN) ₈] ^{<i>n</i>ê^²} -Based Hybrid Networks: Anionâ²Ï€ Interactions. Crystal Growth and Design, 2014, 14, 4030-4040.	3.0	21
31	Molybdenum Complexes as Catalysts for the Oxidation of Cycloalkanes with Molecular Oxygen. Catalysis Letters, 2016, 146, 998-1010.	2.6	21
32	Photoswitchable Cull4Mo ^{IV} and Cull2Mo ^{IV} cyanido-bridged molecules. Dalton Transactions, 2016, 45, 16585-16595.	3.3	20
33	Influence of Ï∈-lodide Intermolecular Interactions on Electronic Properties of Tin(IV) Iodide Semiconducting Complexes. Inorganic Chemistry, 2016, 55, 5935-5945.	4.0	20
34	W-Knotted Chain $\{[Cull(dien)]4[WV(CN)8]\}5+\hat{a}^*$: Synthesis, Crystal Structure, Magnetism, and Theory. Inorganic Chemistry, 2011, 50, 3213-3222.	4.0	19
35	Synthesis, structural characterization and spectroscopy studies of new oxovanadium (IV, V) complexes with hydrazone ligands. Polyhedron, 2015, 87, 226-232.	2.2	19
36	Structure-anticonvulsant activity studies in the group of (E)-N-cinnamoyl aminoalkanols derivatives monosubstituted in phenyl ring with 4-Cl, 4-CH3 or 2-CH3. Bioorganic and Medicinal Chemistry, 2017, 25, 471-482.	3.0	19

3

#	Article	IF	CITATIONS
37	Intermolecular interactions in the crystal structures of potential HIV-1 integrase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1005-1009.	2.2	18
38	N-[(2,6-Dimethylphenoxy)alkyl]aminoalkanolsâ€"their physicochemical and anticonvulsant properties. Bioorganic and Medicinal Chemistry, 2015, 23, 4197-4217.	3.0	18
39	Microwave-Assisted Construction of Ferromagnetic Coordination Polymers of [W ^V (CN) ₈] ³⁻ with Cu ^{II} -pyrazole Synthons. Inorganic Chemistry, 2011, 50, 8808-8816.	4.0	17
40	Mixed-valence VIV/VV tetrametallate core {V4N2O14} cluster containing tris(hydroxymethyl)aminomethane and acetylacetone. Inorganic Chemistry Communication, 2014, 41, 72-75.	3.9	17
41	Geometrical isomerism in pentadecanuclear high-spin Ni9W6 clusters with symmetrical bidentate ligands detected. CrystEngComm, 2012, 14, 6559.	2.6	16
42	A Metallosupramolecular Octahedron Assembled from Twelve Copper(I) Metal Ions and Six 4,4′â€(1,2â€Phenylene)bis(3,5â€dimethylpyrazolâ€1â€ide) Ligands. Zeitschrift Fur Anorganische Und Allgem Chemie, 2013, 639, 1461-1471.	ein ı: 2	16
43	Two Cyanide-Bridged Mn ^{II} â€"Nb ^{IV} Coordination Chain Ferrimagnets Promoted by Interchain Ferromagnetic Interactions. Inorganic Chemistry, 2016, 55, 5281-5286.	4.0	16
44	Anticonvulsant activity, crystal structures, and preliminary safety evaluation of N-trans-cinnamoyl derivatives of selected (un)modified aminoalkanols. European Journal of Medicinal Chemistry, 2016, 107, 26-37.	5.5	16
45	Computer-aided insights into receptor-ligand interaction for novel 5-arylhydantoin derivatives as serotonin 5-HT 7 receptor agents with antidepressant activity. European Journal of Medicinal Chemistry, 2018, 147, 102-114.	5.5	16
46	Low-temperature phase transition in [Mn(OS(CH3)2)6](ClO4)2 studied by single crystal X-ray diffraction, infrared absorption and Raman scattering spectroscopies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 1179-1186.	3.9	15
47	Torsionally Controlled Electronic Coupling in Mixed-Valence Oxodimolybdenum Nitrosyl Scorpionates - a DFT Study. Inorganic Chemistry, 2010, 49, 7676-7684.	4.0	14
48	Effect of ligand substituents on supramolecular self-assembly and electrochemical properties of copper(II) complexes with benzoylhydrazones: X-ray crystal structures and cyclic voltammetry. Polyhedron, 2012, 36, 120-126.	2.2	14
49	Magnetic anisotropy of Co ^{II} –W ^V ferromagnet: single crystal and ab initio study. CrystEngComm, 2013, 15, 2378-2385.	2.6	14
50	Construction of CNa^-bridged molecular squares employing penta-, hexa- and octa-coordinated metal ions. Polyhedron, 2013, 52, 442-447.	2.2	14
51	Design, physico-chemical properties and biological evaluation of some new N-[(phenoxy)alkyl]- and N-{2-[2-(phenoxy)ethoxy]ethyl}aminoalkanols as anticonvulsant agents. Bioorganic and Medicinal Chemistry, 2016, 24, 1793-1810.	3.0	14
52	Solvatomagnetic Studies on Cyanoâ€Bridged Bimetallic Chains Based on [Mn(cyclam)] ³⁺ and Hexacyanometallates. European Journal of Inorganic Chemistry, 2017, 2017, 99-106.	2.0	14
53	Chlorine substituents and linker topology as factors of 5-HT6R activity for novel highly active 1,3,5-triazine derivatives with procognitive properties inÂvivo. European Journal of Medicinal Chemistry, 2020, 203, 112529.	5.5	14
54	Chiral Photomagnets Based on Copper(II) complexes of 1,2-Diaminocyclohexane and Octacyanidomolybdate(IV) lons. Inorganic Chemistry, 2020, 59, 5872-5882.	4.0	13

#	Article	IF	CITATIONS
55	Turning Flexibility into Rigidity: Stepwise Locking of Interpenetrating Networks in a MOF Crystal through Click Reaction. Chemistry of Materials, 2021, 33, 7509-7517.	6.7	13
56	Molecular geometry of antimalarial amodiaquine in different crystalline environments. Journal of Molecular Structure, 2008, 875, 32-41.	3.6	12
57	Pharmacophoric features for a very potent 5â€spirofluorenehydantoin inhibitor of cancer efflux pump <scp>ABCB</scp> 1, based on Xâ€ray analysis. Chemical Biology and Drug Design, 2019, 93, 844-853.	3.2	12
58	Intermolecular Interactions in Crystalline Hydroxychloroquine Sulfate in Comparison with Those in Selected Antimalarial Drugs. Journal of Chemical Crystallography, 2008, 38, 333-338.	1.1	11
59	The role of carboxylate ligands in two novel cyanido-bridged 2D coordination networks Cull–WV and Mnll–NbIV. Dalton Transactions, 2011, 40, 12350.	3. 3	11
60	Cyclams with varied degree of protonation in the assemblies with cyano complexes of Mo and W. Polyhedron, 2012, 47, 73-78.	2.2	11
61	The Synthesis and Crystal Structures of the Homologues of Epalrestat. Journal of Chemical Crystallography, 2015, 45, 151-157.	1.1	11
62	Spectral Characteristic and Preliminary Anticancer Activity ⟨i⟩in vitro⟨ i⟩ of Selected Rhodanineâ€3â€carboxylic Acids Derivatives. Journal of Heterocyclic Chemistry, 2017, 54, 2889-2897.	2.6	11
63	5-Arylideneimidazolones with Amine at Position 3 as Potential Antibiotic Adjuvants against Multidrug Resistant Bacteria. Molecules, 2019, 24, 438.	3 . 8	11
64	Structural studies and physico-chemical properties of new oxodiperoxomolybdenum complexes with nicotinic acid. Polyhedron, 2013, 60, 39-46.	2.2	9
65	Cobalt(II) compounds with acetone isonicotinoyl hydrazone tautomers: Syntheses and crystal structures of complexes with free donor atoms. Inorganica Chimica Acta, 2016, 448, 86-92.	2.4	9
66	Exploration of a new building block for the construction of cyano-bridged solvatomagnetic assemblies: [Ni(cyclam)]3+. CrystEngComm, 2016, 18, 7011-7020.	2.6	9
67	Supramolecular architectures of succinates of 1-hydroxypropan-2-aminium derivatives. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 856-862.	0.5	9
68	An insight into the structure of 5-spiro aromatic derivatives of imidazolidine-2,4-dione, a new group of very potent inhibitors of tumor multidrug resistance in T-lymphoma cells. Bioorganic Chemistry, 2021, 109, 104735.	4.1	9
69	Crystal and molecular structures of trichloro-cobalt(II) complexes of epiquinine, epiquinidine, and epidihydrocinchonine. Chirality, 2007, 19, 152-161.	2.6	8
70	Synthesis and anticonvulsant activity of phenoxyacetyl derivatives of amines, including aminoalkanols and amino acids. MedChemComm, 2018, 9, 1933-1948.	3.4	8
71	Triiodide Organic Salts: Photoelectrochemistry at the Border between Insulators and Semiconductors. ChemElectroChem, 2018, 5, 3486-3497.	3.4	8
72	Discovery of Novel UV-Filters with Favorable Safety Profiles in the 5-Arylideneimidazolidine-2,4-dione Derivatives Group. Molecules, 2019, 24, 2321.	3.8	8

#	Article	IF	Citations
73	An exit beyond the pharmacophore model for 5-HT6R agents - a new strategy to gain dual 5-HT6/5-HT2A action for triazine derivatives with procognitive potential. Bioorganic Chemistry, 2022, 121, 105695.	4.1	8
74	A Porous Sulfonated 2D Zirconium Metal–Organic Framework as a Robust Platform for Proton Conduction. Chemistry - A European Journal, 2022, 28, .	3. 3	8
7 5	Investigations of new barium dicarboxylates. Zeitschrift Fur Kristallographie - Crystalline Materials, 2012, 227, 629-634.	0.8	7
76	Cobalt(<scp>ii</scp>) and copper(<scp>ii</scp>) supramolecular networks with a 1-iminoisoindoline asymmetric pincer. RSC Advances, 2015, 5, 25911-25918.	3.6	7
77	The role of aryl-topology in balancing between selective and dual 5-HT ₇ R/5-HT _{1A} actions of 3,5-substituted hydantoins. MedChemComm, 2018, 9, 1033-1044.	3.4	7
78	Phenylpiperazine 5,5-Dimethylhydantoin Derivatives as First Synthetic Inhibitors of Msr(A) Efflux Pump in Staphylococcus epidermidis. Molecules, 2020, 25, 3788.	3.8	7
79	Molecular Insights into an Antibiotic Enhancer Action of New Morpholine-Containing 5-Arylideneimidazolones in the Fight against MDR Bacteria. International Journal of Molecular Sciences, 2021, 22, 2062.	4.1	7
80	Electrochemical interactions in binuclear molybdenum and tungsten nitrosyl complexes incorporating saturated n-alkanediolate bridging ligands. Crystal structures of [Mo(NO)(TpMe2)I{O(CH2)2OCOCH3}] and [W(NO)(TpMe2)I2]·0.5I2·0.5C6H5CH3. Polyhedron, 2008, 27, 783-796.	2.2	6
81	Physicochemical and biological evaluation of a cinnamamide derivative <i>R,S</i> â€(2 <i>E</i>)â€1â€(3â€hydroxypiperidinâ€1â€yl)â€3â€phenylpropâ€2â€enâ€1â€one (KMâ€608) for Chemical Biology and Drug Design, 2017, 90, 244-253.	nes vous :	system disorc
82	Conformational study of (<i>Z-[4-(2-hydroxyethyl)piperazin-1-yl]-3<i>H</i>-imidazol-4(5<i>H</i>)-one in different environments: insight into the structural properties of bacterial efflux pump inhibitors. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 1151-1157.</i>	0.5	6
83	Exocyclic Sulfur and Selenoorganic Compounds Towards Their Anticancer Effects: Crystallographic and Biological Studies. Anticancer Research, 2018, 38, 4577-4584.	1.1	6
84	Title is missing!. Journal of Solution Chemistry, 2001, 30, 781-794.	1.2	5
85	Phase transitions in [Ca(H2O)4](ClO4)2 studied by differential scanning calorimetry, X-ray single crystal diffraction and neutron powder diffraction. Journal of Molecular Structure, 2008, 891, 233-241.	3.6	5
86	A simple and safe method for the preparation of bis[2-(2 <i>H</i> -tetrazol-5-yl)pyridinium] tetrachloridozincate(II). Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 513-516.	0.4	5
87	Preparation, structural characterization, and decomposition studies of two new \hat{I}^3 -octamolybdates of 4-methylpyridine. Monatshefte Fýr Chemie, 2014, 145, 921-929.	1.8	5
88	Crystallographic studies of cinnamamide derivatives as a means of searching for anticonvulsant activity. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 953-959.	0.5	5
89	Influence of 3-{5-[4-(diethylamino)benzylidene]rhodanine}propionic acid on the conformation of 5-(4-chlorobenzylidene)-2-(4-methylpiperazin-1-yl)-3 <i>H</i> i>Hi>imidazol-4(5 <i>H</i>)-one. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1427-1433.	0.5	5
90	Cinnamamide pharmacophore for anticonvulsant activity: evidence from crystallographic studies. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 782-788.	0.5	5

#	Article	IF	Citations
91	Synthesis and crystal structure of new compounds from the Y–Mg–Ni system. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 19-32.	0.8	5
92	Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Part II. Saudi Pharmaceutical Journal, 2020, 28, 414-426.	2.7	5
93	Hepta-coordinated Ni(<scp>ii</scp>) assemblies – structure and magnetic studies. Dalton Transactions, 2021, 50, 5251-5261.	3.3	5
94	Influence of the position of the methyl substituent and $\langle i \rangle N \langle i \rangle$ -oxide formation on the geometry and intermolecular interactions of 1-(phenoxyethyl)piperidin-4-ol derivatives. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 30-36.	0.5	5
95	The synthesis, molecular structure and spectra properties of sulphur and selenium deferiprone analogues. Arkivoc, 2015, 2015, 216-230.	0.5	5
96	Discovery of Cinnamylidene Derivative of Rhodanine with High Anthelmintic Activity against Rhabditis sp Molecules, 2022, 27, 2155.	3.8	5
97	MOLECULAR GEOMETRY, CYP1AGENE INDUCTION AND CLASTOGENIC ACTIVITY OF CYCLOPENTA[c]PHENANTHRENE IN RAINBOW TROUT. Polycyclic Aromatic Compounds, 2006, 26, 345-365.	2.6	4
98	Incorporation of guanidinium ions in Cull-[MV(CN)8]3â^' double-layered magnetic systems. Dalton Transactions, 2013, 42, 5042.	3.3	4
99	Calorimetric, spectroscopic and structural investigations of phase polymorphism in [Ru(NH3)6](BF4)3. Part I. Journal of Solid State Chemistry, 2013, 197, 429-439.	2.9	4
100	Synthesis and investigations of new strontium dicarboxylates. Zeitschrift Fur Kristallographie - Crystalline Materials, 2013, 228, .	0.8	4
101	Ligand dependent topology and spontaneous resolution in high-spin cyano-bridged Ni ₃ W ₂ clusters. Dalton Transactions, 2016, 45, 12423-12431.	3.3	4
102	Anticonvulsant Activity of Enantiomeric <i>Nâ€trans</i> â€Cinnamoyl Derivatives of 2â€Aminopropanâ€1â€ols and 2â€Aminobutanâ€1â€ols. Chirality, 2016, 28, 482-488.	2.6	4
103	Crystal structure, phase transitions and vibrations of H2O molecules in [Ca(H2O)2](ReO4)2. Journal of Thermal Analysis and Calorimetry, 2018, 131, 479-489.	3.6	4
104	Synthesis of N $\hat{a} \in \{phenoxyalkyl\} \hat{a} \in \{2\hat{a} \in \{2\hat{a} \in \{phenoxy\}ethoxy\}ethyl\} \hat{a} \in \mathbb{N} \hat{a} \in \{phenoxyacetyl\} \}$ Derivatives and Their Activity Within the Central Nervous System. ChemistrySelect, 2019, 4, 9381-9391.	1,5	4
105	A new monoclinic structure type for ternary gallide MgCoGa ₂ . Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 541-546.	0.5	4
106	A Vanadium-Catalyzed Synthesis of Fully Substituted Pyrroles. Journal of Organic Chemistry, 2021, 86, 1649-1658.	3.2	4
107	Crystallographic studies of piperazine derivatives of 3-methyl-5-spirofluorenehydantoin in search of structural features of P-gp inhibitors. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 467-478.	0.5	4
108	Title is missing!. Journal of Solution Chemistry, 2002, 31, 253-260.	1.2	3

#	Article	IF	CITATIONS
109	Phase transitions in [Ca(H2O)4](NO3)2 studied by differential scanning calorimetry, X-ray single crystal diffraction and neutron powder diffraction: Part I. Journal of Alloys and Compounds, 2007, 432, 232-240.	5.5	3
110	Nucleophically transformed N-heterocyclic nitriles trapped by cyanooxomolybdates(IV): Crystallographic and spectroscopic study. Polyhedron, 2012, 45, 229-237.	2.2	3
111	Phase polymorphism of novel [Ru(NH3)6](ClO4)3â€"Comparison with [Ru(NH3)6](BF4)3. Part II. Journal of Solid State Chemistry, 2013, 204, 233-244.	2.9	3
112	S(+)-(2E)-N-(2-Hydroxypropyl)-3-Phenylprop-2-Enamide (KM-568): A Novel Cinnamamide Derivative with Anticonvulsant Activity in Animal Models of Seizures and Epilepsy. International Journal of Molecular Sciences, 2020, 21, 4372.	4.1	3
113	Title is missing!. Journal of Solution Chemistry, 2003, 32, 601-615.	1.2	2
114	Synthesis, characterisation and crystal structure of hydroxylamido-κ2N,O(iodo)[tris(3,5-dimethylpyrazol-1-yl)borato]nitrosylmolybdenum(II). Inorganica Chimica Acta, 2011, 367, 217-221.	2.4	2
115	Crystal structure of two [Ba(H2O)3](ClO4)2 phases and H2O ligands reorientational motions studied by X-ray single crystal, inelastic and quasielastic incoherent neutron scattering and proton magnetic resonance. Journal of Physics and Chemistry of Solids, 2013, 74, 1775-1782.	4.0	2
116	Disentangling steric and electronic factors in monomeric bis(2-bromo-4-chloro-6-{[(2-hydroxyethyl)imino]methyl}phenolato-κ2N,O)copper(II). Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 659-661.	0.5	2
117	Crystal structures of 1,8â€bis(dimethylamino)naphthalene (DMAN) and dicarboxylic acids complexes determined from singleâ€crystal and powder diffraction data. Crystal Research and Technology, 2015, 50, 781-790.	1.3	2
118	Structure dependent charge transfer in bipyrimidinium–octacyanotungstate ion pairs. Polyhedron, 2016, 119, 1-6.	2.2	2
119	N-substituted monodentate alcohols as ligands modifying structure, properties and thermal stability of Mo(IV) complexes. Journal of Molecular Structure, 2015, 1081, 6-13.	3.6	1
120	The relationship between stereochemical and both, pharmacological and ADME-Tox, properties of the potent hydantoin 5-HT7R antagonist MF-8. Bioorganic Chemistry, 2021, 106, 104466.	4.1	1
121	7-Methoxy-2-phenylchroman-4-one. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o271-o271.	0.2	1
122	The conformational analyses of 2-amino- $<$ i>N-[2-(dimethylphenoxy)ethyl]propan-1-ol derivatives in different environments. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 681-689.	0.5	1
123	Effect of the position of a methoxy substituent on the antimicrobial activity and crystal structures of 4-methyl-1,6-diphenylpyrimidine- $2(1 < i > H < i >)$ -selenone derivatives. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 359-366.	0.5	1
124	A supramolecular compound mimicking the Cu-containing active site of pMMO enzyme. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s241-s242.	0.3	0
125	Bis(3-methylphenolato-κO)(nitrosyl-κN)[tris(3,5-dimethylpyrazol-1-yl-κN2)hydridoborato]molybdenum(II). Acta Crystallographica Section E: Structure Reports Online, 2010, 66, m1239-m1240.	0.2	0
126	Structure and Internal Dynamics of Acid K Salt of (E)-2-hydroxyimino-2-cyanoacetic Acid Ethyl Ester. Zeitschrift Fur Physikalische Chemie, 2016, 230, 231-247.	2.8	0

WOJCIECH NITEK

#	Article	ΙF	CITATIONS
127	Influence of chlorine and methyl substituents and their position on the antimicrobial activities and crystal structures of 4-methyl-1,6-diphenylpyrimidine- $2(1 < i > H < i >)$ -selenone derivatives. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 649-658.	0.5	0
128	Crystal structures and properties of novel inorganic-organic materials. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, s329-s329.	0.3	0
129	Structure refinement of SmVO4at pressures ranging to 10â€GPa. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s475-s475.	0.3	0
130	Crystal structure studies of new strontium dicarboxylates. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s502-s502.	0.3	0
131	Crystal structure studies of a few new octamolybdates. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s512-s512.	0.3	0
132	Conformational study of the 3,6-dihydro-2 <i>H</i> -1,4-oxazin-2-one fragment in 8- <i>tert</i> -butyl-7-methoxy-8-methyl-9-oxa-6-azaspiro[4.5]decane-2,10-dione stereoisomers. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 556-562.	0.5	0
133	Influence of protonation on the geometry of 2-{[(2,6-dimethylphenoxy)ethyl]amino}-1-phenylethan-1-ol: crystal structures of the free base and of its chloride and 3-hydroxybenzoate salt forms. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 14-22.	0.5	0