
Hanna G Zimmermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2527170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MOG-lgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. Journal of Neuroinflammation, 2016, 13, 280.	7.2	686
2	Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurology, The, 2017, 16, 797-812.	10.2	397
3	MOG-lgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: Frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-lgG, and origin. Journal of Neuroinflammation, 2016, 13, 279.	7.2	351
4	MOG-lgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: Afferent visual system damage after optic neuritis in MOG-lgG-seropositive versus AQP4-lgG-seropositive patients. Journal of Neuroinflammation, 2016, 13, 282.	7.2	217
5	MOG-lgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: Brainstem involvement - frequency, presentation and outcome. Journal of Neuroinflammation, 2016, 13, 281.	7.2	202
6	Optical Coherence Tomography Reveals Distinct Patterns of Retinal Damage in Neuromyelitis Optica and Multiple Sclerosis. PLoS ONE, 2013, 8, e66151.	2.5	162
7	Microstructural visual system changes in AQP4-antibody–seropositive NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e334.	6.0	128
8	Retinal Damage in Multiple Sclerosis Disease Subtypes Measured by High-Resolution Optical Coherence Tomography. Multiple Sclerosis International, 2012, 2012, 1-10.	0.8	111
9	Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: An international study. Annals of Neurology, 2019, 85, 618-629.	5.3	104
10	Optic Neuritis Is Associated with Inner Nuclear Layer Thickening and Microcystic Macular Edema Independently of Multiple Sclerosis. PLoS ONE, 2013, 8, e71145.	2.5	102
11	Optic neuritis interferes with optical coherence tomography and magnetic resonance imaging correlations. Multiple Sclerosis Journal, 2013, 19, 443-450.	3.0	100
12	Retinal ganglion cell loss in neuromyelitis optica: a longitudinal study. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1259-1265.	1.9	100
13	APOSTEL 2.0 Recommendations for Reporting Quantitative Optical Coherence Tomography Studies. Neurology, 2021, 97, 68-79.	1.1	96
14	Severe structural and functional visual system damage leads to profound loss of vision-related quality of life in patients with neuromyelitis optica spectrum disorders. Multiple Sclerosis and Related Disorders, 2017, 11, 45-50.	2.0	89
15	Photoreceptor layer thinning in idiopathic Parkinson's disease. Movement Disorders, 2014, 29, 1163-1170.	3.9	84
16	Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning – an ultrahigh-field MR pilot study. European Radiology, 2015, 25, 122-131.	4.5	84
17	Reliability of Intra-Retinal Layer Thickness Estimates. PLoS ONE, 2015, 10, e0137316.	2.5	75
18	Optical coherence tomography in neuromyelitis optica spectrum disorders: potential advantages for individualized monitoring of progression and therapy. EPMA Journal, 2018, 9, 21-33.	6.1	75

#	Article	IF	CITATIONS
19	Association of Retinal Ganglion Cell Layer Thickness With Future Disease Activity in Patients With Clinically Isolated Syndrome. JAMA Neurology, 2018, 75, 1071.	9.0	72
20	Impairment of contrast visual acuity as a functional correlate of retinal nerve fibre layer thinning and total macular volume reduction in multiple sclerosis. British Journal of Ophthalmology, 2012, 96, 62-67.	3.9	68
21	Optic Nerve Head Quantification in Idiopathic Intracranial Hypertension by Spectral Domain OCT. PLoS ONE, 2012, 7, e36965.	2.5	68
22	Patients with multiple sclerosis demonstrate reduced subbasal corneal nerve fibre density. Multiple Sclerosis Journal, 2017, 23, 1847-1853.	3.0	65
23	Optical coherence tomography in myelin-oligodendrocyte-glycoprotein antibody-seropositive patients: a longitudinal study. Journal of Neuroinflammation, 2019, 16, 154.	7.2	61
24	Temporal Retinal Nerve Fiber Loss in Patients with Spinocerebellar Ataxia Type 1. PLoS ONE, 2011, 6, e23024.	2.5	57
25	Patterns of Retinal Damage Facilitate Differential Diagnosis between Susac Syndrome and MS. PLoS ONE, 2012, 7, e38741.	2.5	52
26	Altered fovea in AQP4-IgC–seropositive neuromyelitis optica spectrum disorders. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	50
27	Synergistic Strategy for Multicolor Two-photon Microscopy: Application to the Analysis of Germinal Center Reactions In Vivo. Scientific Reports, 2017, 7, 7101.	3.3	48
28	Retinal Optical Coherence Tomography in Neuromyelitis Optica. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	47
29	Relations of low contrast visual acuity, quality of life and multiple sclerosis functional composite: a cross-sectional analysis. BMC Neurology, 2014, 14, 31.	1.8	46
30	Optical coherence tomography in acute optic neuritis: A population-based study. Acta Neurologica Scandinavica, 2018, 138, 566-573.	2.1	44
31	Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis. Expert Review of Neurotherapeutics, 2019, 19, 31-43.	2.8	44
32	Serum GFAP and NfL as disease severity and prognostic biomarkers in patients with aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder. Journal of Neuroinflammation, 2021, 18, 105.	7.2	44
33	Comparison of Standard Versus Wide-Field Composite Images of the Corneal Subbasal Layer by In Vivo Confocal Microscopy. , 2015, 56, 5801.		39
34	Anatomical Wiring and Functional Networking Changes in the Visual System Following Optic Neuritis. JAMA Neurology, 2018, 75, 287.	9.0	39
35	Low contrast visual acuity testing is associated with cognitive performance in multiple sclerosis: a cross-sectional pilot study. BMC Neurology, 2013, 13, 167.	1.8	37
36	Normative Data and Minimally Detectable Change for Inner Retinal Layer Thicknesses Using a Semi-automated OCT Image Segmentation Pipeline. Frontiers in Neurology, 2019, 10, 1117.	2.4	36

HANNA G ZIMMERMANN

#	Article	IF	CITATIONS
37	Longitudinal optic neuritis-unrelated visual evoked potential changes in NMO spectrum disorders. Neurology, 2020, 94, e407-e418.	1.1	36
38	Association of Visual Impairment in Neuromyelitis Optica Spectrum Disorder With Visual Network Reorganization. JAMA Neurology, 2018, 75, 296.	9.0	34
39	Retinal inner nuclear layer volume reflects inflammatory disease activity in multiple sclerosis; a longitudinal OCT study. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2019, 5, 205521731987158.	1.0	34
40	Artificial intelligence extension of the OSCARâ€ŀB criteria. Annals of Clinical and Translational Neurology, 2021, 8, 1528-1542.	3.7	33
41	Frequent retinal ganglion cell damage after acute optic neuritis. Multiple Sclerosis and Related Disorders, 2018, 22, 141-147.	2.0	30
42	Increased Serum Neurofilament Light and Thin Ganglion Cell–Inner Plexiform Layer Are Additive Risk Factors for Disease Activity in Early Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	29
43	No Evidence for Retinal Damage Evolving from Reduced Retinal Blood Flow in Carotid Artery Disease. BioMed Research International, 2015, 2015, 1-8.	1.9	21
44	Visual dysfunction, but not retinal thinning, following anti-NMDA receptor encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e198.	6.0	21
45	Longitudinal Intravital Imaging of the Retina Reveals Long-term Dynamics of Immune Infiltration and Its Effects on the Glial Network in Experimental Autoimmune Uveoretinitis, without Evident Signs of Neuronal Dysfunction in the Ganglion Cell Layer. Frontiers in Immunology, 2016, 7, 642.	4.8	20
46	Attack-related damage of thalamic nuclei in neuromyelitis optica spectrum disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1156-1164.	1.9	20
47	Longitudinal Retinal Changes in <scp>MOGAD</scp> . Annals of Neurology, 2022, 92, 476-485.	5.3	20
48	Contribution of blood vessels to retinal nerve fiber layer thickness in NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e338.	6.0	19
49	Optical coherence tomography for retinal imaging in multiple sclerosis. Degenerative Neurological and Neuromuscular Disease, 2014, 4, 153.	1.3	18
50	Anti-MOG antibody–associated disorders: differences in clinical profiles and prognosis in Japan and Germany. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 377-383.	1.9	18
51	Vision and Vision-Related Measures in Progressive Multiple Sclerosis. Frontiers in Neurology, 2019, 10, 455.	2.4	17
52	Temporal visual resolution and disease severity in MS. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e492.	6.0	15
53	Imaging markers of disability in aquaporin-4 immunoglobulin G seropositive neuromyelitis optica: a graph theory study. Brain Communications, 2019, 1, fcz026.	3.3	15
54	Association of a Marker of <i>N</i> -Acetylglucosamine With Progressive Multiple Sclerosis and Neurodegeneration. JAMA Neurology, 2021, 78, 842.	9.0	15

#	Article	IF	CITATIONS
55	Foveal changes in aquaporinâ€4 antibody seropositive neuromyelitis optica spectrum disorder are independent of optic neuritis and not overtly progressive. European Journal of Neurology, 2021, 28, 2280-2293.	3.3	14
56	Spinocerebellar ataxia type 14: refining clinicogenetic diagnosis in a rare adultâ€onset disorder. Annals of Clinical and Translational Neurology, 2021, 8, 774-789.	3.7	13
57	Astrocytic outer retinal layer thinning is not a feature in AQP4-IgG seropositive neuromyelitis optica spectrum disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 188-195.	1.9	13
58	Effects of Deep Repetitive Transcranial Magnetic Stimulation on Brain-Derived Neurotrophic Factor Serum Concentration in Healthy Volunteers. Neuropsychobiology, 2014, 69, 112-119.	1.9	12
59	Longitudinal analysis of T1w/T2w ratio in patients with multiple sclerosis from first clinical presentation. Multiple Sclerosis Journal, 2021, 27, 2180-2190.	3.0	12
60	Validation of Computer-Adaptive Contrast Sensitivity as a Tool to Assess Visual Impairment in Multiple Sclerosis Patients. Frontiers in Neuroscience, 2021, 15, 591302.	2.8	11
61	Temporal retinal nerve fibre layer thinning in cluster headache patients detected by optical coherence tomography. Cephalalgia, 2015, 35, 946-958.	3.9	10
62	Cohort profile: a collaborative multicentre study of retinal optical coherence tomography in 539 patients with neuromyelitis optica spectrum disorders (CROCTINO). BMJ Open, 2020, 10, e035397.	1.9	10
63	Fingolimod after a first unilateral episode of acute optic neuritis (MOVING) – preliminary results from a randomized, rater-blind, active-controlled, phase 2 trial. BMC Neurology, 2020, 20, 75.	1.8	10
64	Modular deep neural networks for automatic quality control of retinal optical coherence tomography scans. Computers in Biology and Medicine, 2022, 141, 104822.	7.0	10
65	Visual system damage and network maladaptation are associated with cognitive performance in neuromyelitis optica spectrum disorders Multiple Sclerosis and Related Disorders, 2020, 45, 102406.	2.0	9
66	Optic chiasm measurements may be useful markers of anterior optic pathway degeneration in neuromyelitis optica spectrum disorders. European Radiology, 2020, 30, 5048-5058.	4.5	9
67	Lateral geniculate nucleus volume changes after optic neuritis in neuromyelitis optica: A longitudinal study. NeuroImage: Clinical, 2021, 30, 102608.	2.7	9
68	Self-perception and determinants of color vision in Parkinson's disease. Journal of Neural Transmission, 2018, 125, 145-152.	2.8	8
69	Functionally Relevant Maculopathy and Optic Atrophy in Spinocerebellar Ataxia Type 1. Movement Disorders Clinical Practice, 2020, 7, 502-508.	1.5	7
70	Retinal Thickness Analysis in Progressive Multiple Sclerosis Patients Treated With Epigallocatechin Gallate: Optical Coherence Tomography Results From the SUPREMES Study. Frontiers in Neurology, 2021, 12, 615790.	2.4	7
71	Retinal optical coherence tomography and magnetic resonance imaging in neuromyelitis optica spectrum disorders and MOG-antibody associated disorders: an updated review. Expert Review of Neurotherapeutics, 2021, 21, 1101-1123.	2.8	7
72	AQP4-IgG autoimmunity in Japan and Germany: Differences in clinical profiles and prognosis in seropositive neuromyelitis optica spectrum disorders. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2021, 7, 205521732110068.	1.0	6

#	Article	IF	CITATIONS
73	Afferent Visual Pathway Affection in Patients with PMP22 Deletion-Related Hereditary Neuropathy with Liability to Pressure Palsies. PLoS ONE, 2016, 11, e0164617.	2.5	6
74	Cultural bias in motor function patterns: Potential relevance for predictive, preventive, and personalized medicine. EPMA Journal, 2021, 12, 91-101.	6.1	4
75	Investigation of Visual System Involvement in Spinocerebellar Ataxia Type 14. Cerebellum, 2020, 19, 469-482.	2.5	3
76	Impaired motion perception is associated with functional and structural visual pathway damage in multiple sclerosis and neuromyelitis optica spectrum disorders. Multiple Sclerosis Journal, 2022, 28, 757-767.	3.0	3
77	Retinal imaging and axonal degeneration in later onset multiple sclerosis. Journal of the Neurological Sciences, 2016, 370, 1-6.	0.6	2
78	Automatic quality evaluation as assessment standard for optical coherence tomography. , 2019, , .		2
79	A novel investigation method for axonal damage in neuromyelitis optica spectrum disorder: In vivo corneal confocal microscopy. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2021, 7, 205521732199806.	1.0	1
80	Understanding neurodegenerative changes of the afferent visual pathway in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e667.	6.0	0