List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2527165/publications.pdf Version: 2024-02-01

ALEXANDED S TIMIN

#	Article	IF	CITATIONS
1	Impact of metallic coating on the retention of 225Ac and its daugthers within core–shell nanocarriers. Journal of Colloid and Interface Science, 2022, 608, 2571-2583.	5.0	5
2	Calcium carbonate carriers for combined chemo- and radionuclide therapy of metastatic lung cancer. Journal of Controlled Release, 2022, 344, 1-11.	4.8	17
3	Incorporation of Perovskite Nanocrystals into Polymer Matrix for Enhanced Stability in Biological Media: <i>In Vitro</i> and <i>In Vivo</i> Studies. ACS Applied Bio Materials, 2022, 5, 2411-2420.	2.3	6
4	Biodegradable particles for protein delivery: Estimation of the release kinetics inside cells. , 2022, 139, 212966.		2
5	Preclinical studies of automated radiolabeled microcarriers for radiosynovectomy of inflammatory joint disease. Applied Materials Today, 2022, 29, 101571.	2.3	2
6	Universal Chelator-Free Radiolabeling of Organic and Inorganic-Based Nanocarriers with Diagnostic and Therapeutic Isotopes for Internal Radiotherapy. Chemistry of Materials, 2022, 34, 6593-6605.	3.2	11
7	Layerâ€byâ€Layerâ€Assembled Capsule Size Affects the Efficiency of Packaging and Delivery of Different Genetic Cargo. Particle and Particle Systems Characterization, 2021, 38, 2000228.	1.2	11
8	Variation in tumor pH affects pH-triggered delivery of peptide-modified magnetic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102317.	1.7	16
9	Layer-by-Layer technique as a versatile tool for gene delivery applications. Expert Opinion on Drug Delivery, 2021, 18, 1047-1066.	2.4	17
10	An investigation of calcium carbonate core-shell particles for incorporation of 225Ac and sequester of daughter radionuclides: in vitro and in vivo studies. Journal of Controlled Release, 2021, 330, 726-737.	4.8	16
11	Calcium Carbonate Core–Shell Particles for Incorporation of ²²⁵ Ac and Their Application in Local α-Radionuclide Therapy. ACS Applied Materials & Interfaces, 2021, 13, 25599-25610.	4.0	17
12	Adaptive Nanoparticleâ€Polymer Complexes as Optical Elements: Design and Application in Nanophotonics and Nanomedicine. Laser and Photonics Reviews, 2021, 15, 2000421.	4.4	13
13	Boosting transfection efficiency: A systematic study using layer-by-layer based gene delivery platform. Materials Science and Engineering C, 2021, 126, 112161.	3.8	7
14	Real-Time Temperature Monitoring of Photoinduced Cargo Release inside Living Cells Using Hybrid Capsules Decorated with Gold Nanoparticles and Fluorescent Nanodiamonds. ACS Applied Materials & Interfaces, 2021, 13, 36737-36746.	4.0	10
15	Halide Perovskite Nanocrystals with Enhanced Water Stability for Upconversion Imaging in a Living Cell. Journal of Physical Chemistry Letters, 2021, 12, 8991-8998.	2.1	20
16	Microfluidic synthesis of optically responsive materials for nano- and biophotonics. Advances in Colloid and Interface Science, 2021, 298, 102548.	7.0	11
17	Toxicological Analysis of Hepatocytes Using FLIM Technique: In Vitro versus Ex Vivo Models. Cells, 2021, 10, 2894.	1.8	1
18	Optically responsive delivery platforms: from the design considerations to biomedical applications. Nanophotonics, 2020, 9, 39-74.	2.9	45

#	Article	IF	CITATIONS
19	Biomimetic drug delivery platforms based on mesenchymal stem cells impregnated with light-responsive submicron sized carriers. Biomaterials Science, 2020, 8, 1137-1147.	2.6	36
20	Development of Optimized Strategies for Growth Factor Incorporation onto Electrospun Fibrous Scaffolds To Promote Prolonged Release. ACS Applied Materials & Interfaces, 2020, 12, 5578-5592.	4.0	33
21	Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials, 2020, 258, 120282.	5.7	58
22	DDAO Controlled Synthesis of Organo-Modified Silica Nanoparticles with Encapsulated Fluorescent Boron Dipyrrins and Study of Their Uptake by Cancerous Cells. Molecules, 2020, 25, 3802.	1.7	8
23	Radiolabeling Strategies of Micron- and Submicron-Sized Core–Shell Carriers for <i>In Vivo</i> Studies. ACS Applied Materials & Interfaces, 2020, 12, 31137-31147.	4.0	18
24	Comprehensive Characterization of Titania Nanotubes Fabricated on Ti–Nb Alloys: Surface Topography, Structure, Physicomechanical Behavior, and a Cell Culture Assay. ACS Biomaterials Science and Engineering, 2020, 6, 1487-1499.	2.6	35
25	Bacteriostatic Effect of Piezoelectric Poly-3-Hydroxybutyrate and Polyvinylidene Fluoride Polymer Films under Ultrasound Treatment. Polymers, 2020, 12, 240.	2.0	22
26	Allâ€Optical Nanoscale Heating and Thermometry with Resonant Dielectric Nanoparticles for Controllable Drug Release in Living Cells. Laser and Photonics Reviews, 2020, 14, 1900082.	4.4	34
27	Development of effective strategies for the radionuclide incorporation into CaCO3 particles for in vivo studies. AIP Conference Proceedings, 2020, , .	0.3	1
28	Current outlook on radionuclide delivery systems: from design consideration to translation into clinics. Journal of Nanobiotechnology, 2019, 17, 90.	4.2	65
29	Controllable Synthesis of Calcium Carbonate with Different Geometry: Comprehensive Analysis of Particle Formation, Cellular Uptake, and Biocompatibility. ACS Sustainable Chemistry and Engineering, 2019, 7, 19142-19156.	3.2	71
30	Biological Kerker Effect Boosts Light Collection Efficiency in Plants. Nano Letters, 2019, 19, 7062-7071.	4.5	59
31	Safe and Effective Delivery of Antitumor Drug Using Mesenchymal Stem Cells Impregnated with Submicron Carriers. ACS Applied Materials & Interfaces, 2019, 11, 13091-13104.	4.0	43
32	Multilayer Capsules Inside Biological Systems: State-of-the-Art and Open Challenges. Langmuir, 2019, 35, 4747-4762.	1.6	40
33	Adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells on additively manufactured Ti6Al4V alloy scaffolds modified with calcium phosphate nanoparticles. Colloids and Surfaces B: Biointerfaces, 2019, 176, 130-139.	2.5	37
34	Efficient gene editing via non-viral delivery of CRISPR–Cas9 system using polymeric and hybrid microcarriers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 97-108.	1.7	99
35	Cellâ€Based Drug Delivery and Use of Nanoâ€and Microcarriers for Cell Functionalization. Advanced Healthcare Materials, 2018, 7, 1700818.	3.9	75
36	Porous Inorganic Carriers Based on Silica, Calcium Carbonate and Calcium Phosphate for Controlled/Modulated Drug Delivery: Fresh Outlook and Future Perspectives. Pharmaceutics, 2018, 10, 167.	2.0	103

#	Article	IF	CITATIONS
37	Multifunctional Scaffolds with Improved Antimicrobial Properties and Osteogenicity Based on Piezoelectric Electrospun Fibers Decorated with Bioactive Composite Microcapsules. ACS Applied Materials & Interfaces, 2018, 10, 34849-34868.	4.0	79
38	Inhibition of influenza A virus by mixed siRNAs, targeting the PA, NP, and NS genes, delivered by hybrid microcarriers. Antiviral Research, 2018, 158, 147-160.	1.9	10
39	Multi-layer microcapsules: fresh insights and new applications. Expert Opinion on Drug Delivery, 2017, 14, 583-587.	2.4	59
40	Intracellular Breakable and Ultrasound-Responsive Hybrid Microsized Containers for Selective Drug Release into Cancerous Cells. Particle and Particle Systems Characterization, 2017, 34, 1600417.	1.2	29
41	Hybrid inorganic-organic capsules for efficient intracellular delivery of novel siRNAs against influenza A (H1N1) virus infection. Scientific Reports, 2017, 7, 102.	1.6	41
42	A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2017, 160, 48-59.	2.5	103
43	Mesenchymal Stem Cells Engineering: Microcapsules-Assisted Gene Transfection and Magnetic Cell Separation. ACS Biomaterials Science and Engineering, 2017, 3, 2314-2324.	2.6	20
44	Inorganic/Organic Multilayer Capsule Composition for Improved Functionality and External Triggering. Advanced Materials Interfaces, 2017, 4, 1600338.	1.9	53
45	Recent Advances of Individual BODIPY and BODIPY-Based Functional Materials in Medical Diagnostics and Treatment. Current Medicinal Chemistry, 2017, 24, 2745-2772.	1.2	66
46	Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection. Materials Chemistry and Physics, 2016, 183, 422-429.	2.0	12
47	Triple-responsive inorganic–organic hybrid microcapsules as a biocompatible smart platform for the delivery of small molecules. Journal of Materials Chemistry B, 2016, 4, 7270-7282.	2.9	28
48	Intracellular redox induced drug release in cancerous and mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2016, 147, 450-458.	2.5	17
49	Mesenchymal Stem Cell Magnetization: Magnetic Multilayer Microcapsule Uptake, Toxicity, Impact on Functional Properties, and Perspectives for Magnetic Delivery. Advanced Healthcare Materials, 2016, 5, 3182-3190.	3.9	30
50	Analysis of binding ability of two tetramethylpyridylporphyrins to albumin and its complex with bilirubin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 168, 12-20.	2.0	4
51	Magnetic silica hybrids modified with guanidine containing co-polymers for drug delivery applications. Materials Science and Engineering C, 2016, 64, 20-28.	3.8	16
52	Characterization and evaluation of silica particles coated by PVP and albumin for effective bilirubin removal. Journal of Sol-Gel Science and Technology, 2015, 74, 187-198.	1.1	8
53	Synthesis and application of silica hybrids grafted with new guanidine-containing polymers as highly effective adsorbents for bilirubin removal. Colloid and Polymer Science, 2015, 293, 1667-1674.	1.0	26
54	Application of guanidine-containing polymers for preparation of pH responsive silica-based particles for drug delivery systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 477, 26-34.	2.3	18

#	Article	IF	CITATIONS
55	Novel biocide multifunctional materials based on mesoporous silicas modified by treatment with guanidine polymers or mercaptopropyltrimethoxysilane: synthesis, characterization, and applications. Research on Chemical Intermediates, 2015, 41, 2437-2451.	1.3	5
56	Preparation and characterization of organo-functionalized silicas for bilirubin removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 464, 65-77.	2.3	24
57	Polyacrylate guanidine and polymethacrylate guanidine as novel cationic polymers for effective bilirubin binding. Journal of Polymer Research, 2014, 21, 1.	1.2	13
58	Synthesis and application of amino-modified silicas containing albumin as hemoadsorbents for bilirubin adsorption. Journal of Non-Crystalline Solids, 2014, 385, 81-88.	1.5	36
59	Immobilization of Bovine Serum Albumin onto Porous Poly(vinylpyrrolidone)-Modified Silicas. Industrial & Engineering Chemistry Research, 2014, 53, 13699-13710.	1.8	21
60	Preparation and surface properties of mesoporous silica particles modified with poly(N-vinyl-2-pyrrolidone) as a potential adsorbent for bilirubin removal. Materials Chemistry and Physics, 2014, 147, 673-683.	2.0	24
61	Silver–Silica Nanocomposite Materials Incorporated into Textile Fabrics: Chemical and Biological Study. BioNanoScience, 2013, 3, 415-422.	1.5	5
62	Sol–gel synthesis of mesoporous silicas containing albumin and guanidine polymers and its application to the bilirubin adsorption. Journal of Sol-Gel Science and Technology, 2013, 67, 297-303.	1.1	14