Gary A Kendrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2527079/publications.pdf Version: 2024-02-01

		18436	11899
232	20,358	62	134
papers	citations	h-index	g-index
233	233	233	11452
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12377-12381.	3.3	2,971
2	A Global Crisis for Seagrass Ecosystems. BioScience, 2006, 56, 987.	2.2	2,318
3	Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 2012, 5, 505-509.	5.4	1,406
4	Climate-driven regime shift of a temperate marine ecosystem. Science, 2016, 353, 169-172.	6.0	951
5	Extinction risk assessment of the world's seagrass species. Biological Conservation, 2011, 144, 1961-1971.	1.9	594
6	Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. Journal of Experimental Marine Biology and Ecology, 2011, 400, 7-16.	0.7	350
7	Global analysis of seagrass restoration: the importance of largeâ€scale planting. Journal of Applied Ecology, 2016, 53, 567-578.	1.9	348
8	A marine heatwave drives massive losses from the world's largest seagrass carbon stocks. Nature Climate Change, 2018, 8, 338-344.	8.1	318
9	Trophic Transfers from Seagrass Meadows Subsidize Diverse Marine and Terrestrial Consumers. Ecosystems, 2008, 11, 1198-1210.	1.6	304
10	Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecology Letters, 2010, 13, 685-694.	3.0	282
11	Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Marine Ecology - Progress Series, 2007, 350, 245-254.	0.9	281
12	A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques. Marine Biology, 2005, 148, 415-425.	0.7	269
13	The Central Role of Dispersal in the Maintenance and Persistence of Seagrass Populations. BioScience, 2012, 62, 56-65.	2.2	256
14	Unravelling complexity in seagrass systems for management: Australia as a microcosm. Science of the Total Environment, 2015, 534, 97-109.	3.9	228
15	Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Global Change Biology, 2015, 21, 1463-1474.	4.2	227
16	Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. Journal of Ecology, 2015, 103, 296-302.	1.9	199
17	Title is missing!. , 1997, 9, 311-326.		175
18	A comparison of underwater visual distance estimates made by scuba divers and a stereo-video system: implications for underwater visual census of reef fish abundance. Marine and Freshwater Research, 2004, 55, 573.	0.7	167

#	Article	IF	CITATIONS
19	Changes in seagrass coverage in Cockburn Sound, Western Australia between 1967 and 1999. Aquatic Botany, 2002, 73, 75-87.	0.8	159
20	Monitoring of Benthic Reference Sites: Using an Autonomous Underwater Vehicle. IEEE Robotics and Automation Magazine, 2012, 19, 73-84.	2.2	153
21	Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nature Communications, 2019, 10, 4313.	5.8	150
22	Exploring <i>Symbiodinium</i> diversity and host specificity in <i>Acropora</i> corals from geographical extremes of <scp>W</scp> estern <scp>A</scp> ustralia with 454 amplicon pyrosequencing. Molecular Ecology, 2014, 23, 3113-3126.	2.0	143
23	Too hot to handle: Unprecedented seagrass death driven by marine heatwave in a World Heritage Area. Global Change Biology, 2020, 26, 3525-3538.	4.2	139
24	Recruitment of coralline crusts and filamentous turf algae in the Galapagos archipelago: effect of simulated scour, erosion and accretion. Journal of Experimental Marine Biology and Ecology, 1991, 147, 47-63.	0.7	132
25	Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows. BioScience, 2016, 66, 938-948.	2.2	128
26	The movement ecology of seagrasses. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140878.	1.2	124
27	Regional differences in kelp-associated algal assemblages on temperate limestone reefs in south-western Australia. Diversity and Distributions, 2003, 9, 427-441.	1.9	117
28	Austral spring microalgae across the Weddell Sea ice edge: spatial relationships found along a northward transect during AMERIEZ 83. Deep-sea Research Part A, Oceanographic Research Papers, 1988, 35, 1-20.	1.6	116
29	Modification of the physical environment by an Ecklonia radiata (Laminariales) canopy and implications for associated foliose algae. Aquatic Ecology, 2005, 39, 419-430.	0.7	110
30	Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance. Marine Pollution Bulletin, 2018, 134, 166-176.	2.3	108
31	The distribution of seagrass species in shark bay, Western Australia, with notes on their ecology. Aquatic Botany, 1988, 30, 305-317.	0.8	107
32	Modelling distribution of marine benthos from hydroacoustics and underwater video. Continental Shelf Research, 2008, 28, 1800-1810.	0.9	106
33	Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. Journal of Ecology, 2014, 102, 1528-1536.	1.9	104
34	Heat stress of two tropical seagrass species during low tides – impact on underwater net photosynthesis, dark respiration and diel <i>inÂsitu</i> internal aeration. New Phytologist, 2016, 210, 1207-1218.	3.5	101
35	Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows: examples from Florida Bay and Shark Bay. Marine and Freshwater Research, 2012, 63, 967.	0.7	99
36	Seagrasses of south–west Australia: A conceptual synthesis of the world's most diverse and extensive seagrass meadows. Journal of Experimental Marine Biology and Ecology, 2007, 350, 21-45.	0.7	96

#	Article	IF	CITATIONS
37	Dispersal distances for propagules of Sargassum spinuligerum (Sargassaceae, Phaeophyta) measured directly by vital staining and venturi suction sampling. Marine Ecology - Progress Series, 1991, 79, 133-138.	0.9	96
38	Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses. Biological Reviews, 2017, 92, 921-938.	4.7	94
39	Dispersal of propagules of Sargassum spp. (Sargassaceae: Phaeophyta): Observations of local patterns of dispersal and consequences for recruitment and population structure. Journal of Experimental Marine Biology and Ecology, 1995, 192, 273-288.	0.7	93
40	Threats to Macroalgal Diversity: Marine Habitat Destruction and Fragmentation, Pollution and Introduced Species. Botanica Marina, 1998, 41, .	0.6	92
41	Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?. Biogeosciences, 2016, 13, 4915-4926.	1.3	92
42	Seagrass loss associated with boat moorings at Rottnest Island, Western Australia. Ocean and Coastal Management, 1995, 26, 225-246.	2.0	91
43	Oxygen loss from seagrass roots coincides with colonisation of sulphide-oxidising cable bacteria and reduces sulphide stress. ISME Journal, 2019, 13, 707-719.	4.4	89
44	The Genome of a Southern Hemisphere Seagrass Species (<i>Zostera muelleri</i>). Plant Physiology, 2016, 172, 272-283.	2.3	88
45	Low Light Availability Alters Root Exudation and Reduces Putative Beneficial Microorganisms in Seagrass Roots. Frontiers in Microbiology, 2017, 8, 2667.	1.5	88
46	Biogenic habitat structure of seaweeds change along a latitudinal gradient in ocean temperature. Journal of Experimental Marine Biology and Ecology, 2011, 400, 264-271.	0.7	87
47	A Systematic Review of How Multiple Stressors From an Extreme Event Drove Ecosystem-Wide Loss of Resilience in an Iconic Seagrass Community. Frontiers in Marine Science, 2019, 6, .	1.2	87
48	A test of a functional group approach to detecting shifts in macroalgal communities along a disturbance gradient. Marine Ecology - Progress Series, 1997, 153, 125-138.	0.9	87
49	Changes in Seagrass Cover on Success and Parmelia Banks, Western Australia Between 1965 and 1995. Estuarine, Coastal and Shelf Science, 2000, 50, 341-353.	0.9	86
50	Upgrading Marine Ecosystem Restoration Using Ecologicalâ€Social Concepts. BioScience, 2016, 66, 156-163.	2.2	85
51	Impact of mooring activities on carbon stocks in seagrass meadows. Scientific Reports, 2016, 6, 23193.	1.6	84
52	Effects of protection from fishing on the lengths of targeted and non-targeted fish species at the Houtman Abrolhos Islands, Western Australia. Marine Ecology - Progress Series, 2009, 384, 241-249.	0.9	84
53	Protection from fishing alters the species composition of fish assemblages in a temperate-tropical transition zone. Marine Biology, 2007, 152, 1197-1206.	0.7	83
54	Seagrass Restoration Is Possible: Insights and Lessons From Australia and New Zealand. Frontiers in Marine Science, 2020, 7, .	1.2	83

#	Article	IF	CITATIONS
55	Nonlinear processes in seagrass colonisation explained by simple clonal growth rules. Oikos, 2005, 108, 165-175.	1.2	82
56	Deep thinking: a systematic review of mesophotic coral ecosystems. ICES Journal of Marine Science, 2017, 74, 2309-2320.	1.2	79
57	Feedback between sediment and light for seagrass: Where is it important?. Limnology and Oceanography, 2016, 61, 1937-1955.	1.6	78
58	Landscape-scale changes in seagrass distribution over time: a case study from Success Bank, Western Australia. Aquatic Botany, 1999, 65, 293-309.	0.8	72
59	The effect of thallus size, life stage, aggregation, wave exposure and substratum conditions on the forces required to break or dislodge the small kelp Ecklonia radiata. Botanica Marina, 2004, 47, .	0.6	69
60	Clonality in seagrasses, emergent properties and seagrass landscapes. Marine Ecology - Progress Series, 2005, 290, 291-296.	0.9	68
61	Variation in abundances of herbivorous invertebrates in temperate subtidal rocky reef habitats. Marine and Freshwater Research, 2004, 55, 93.	0.7	67
62	Knowledge gaps in tropical Southeast Asian seagrass systems. Estuarine, Coastal and Shelf Science, 2011, 92, 118-131.	0.9	66
63	Large-Scale Geographic Variation in Distribution and Abundance of Australian Deep-Water Kelp Forests. PLoS ONE, 2015, 10, e0118390.	1.1	66
64	Using Agent-Based Models to Aid Reef Restoration: Enhancing Coral Cover and Topographic Complexity through the Spatial Arrangement of Coral Transplants. Restoration Ecology, 2005, 13, 685-694.	1.4	65
65	Invasion Is a Community Affair: Clandestine Followers in the Bacterial Community Associated to Green Algae, Caulerpa racemosa, Track the Invasion Source. PLoS ONE, 2013, 8, e68429.	1.1	63
66	Differences in fish assemblages from different reef habitats at Hamelin Bay, south-western Australia. Marine and Freshwater Research, 2003, 54, 177.	0.7	62
67	Assemblage turnover and taxonomic sufficiency of subtidal macroalgae at multiple spatial scales. Journal of Experimental Marine Biology and Ecology, 2010, 384, 76-86.	0.7	61
68	Consistent abundance distributions of marine fishes in an old, climatically buffered, infertile seascape. Global Ecology and Biogeography, 2012, 21, 886-897.	2.7	61
69	Challenges for Restoration of Coastal Marine Ecosystems in the Anthropocene. Frontiers in Marine Science, 2020, 7, .	1.2	60
70	Canopy interactions and physical stress gradients in subtidal communities. Ecology Letters, 2015, 18, 677-686.	3.0	59
71	Modelling formation of complex topography by the seagrass Posidonia oceanica. Estuarine, Coastal and Shelf Science, 2005, 65, 717-725.	0.9	55
72	Efficiently measuring complex sessile epibenthic organisms using a novel photogrammetric technique. Journal of Experimental Marine Biology and Ecology, 2006, 339, 120-133.	0.7	55

#	Article	IF	CITATIONS
73	The influence of geomorphology and sedimentary processes on shallow-water benthic habitat distribution: Esperance Bay, Western Australia. Estuarine, Coastal and Shelf Science, 2007, 72, 379-386.	0.9	55
74	The effects of light and thallus scour from Ecklonia radiata canopy on an associated foliose algal assemblage: the importance of photoacclimation. Marine Biology, 2004, 144, 1019-1027.	0.7	54
75	Regional-scale benthic monitoring for ecosystem-based fisheries management (EBFM) using an autonomous underwater vehicle (AUV). ICES Journal of Marine Science, 2012, 69, 1108-1118.	1.2	54
76	Photosynthetic response to globally increasing CO ₂ of coâ€occurring temperate seagrass species. Plant, Cell and Environment, 2016, 39, 1240-1250.	2.8	54
77	Restricted gene flow and local adaptation highlight the vulnerability of high″atitude reefs to rapid environmental change. Global Change Biology, 2017, 23, 2197-2205.	4.2	54
78	ROLE OF RECRUITMENT IN STRUCTURING BEDS OF SARGASSUM SPP. (PHAEOPHYTA) AT ROTTNEST ISLAND, WESTERN AUSTRALIA1. Journal of Phycology, 1994, 30, 200-208.	1.0	53
79	The role of hydrodynamics on seed dispersal in seagrasses. Limnology and Oceanography, 2012, 57, 1257-1265.	1.6	53
80	Differences in trophic position among sympatric sea urchin species. Estuarine, Coastal and Shelf Science, 2006, 66, 291-297.	0.9	52
81	Contrasting influence of sea urchins on attached and drift macroalgae. Marine Ecology - Progress Series, 2005, 299, 101-110.	0.9	52
82	Disturbance and reef topography maintain high local diversity in <i>Ecklonia radiata</i> kelp forests. Oikos, 2007, 116, 1618-1630.	1.2	51
83	Effects of propagule settlement density and adult canopy on survival of recruits of Sargassum spp. (Sargassaceae: Phaeophyta). Marine Ecology - Progress Series, 1994, 103, 129-140.	0.9	51
84	Aquaculture of <i>Posidonia australis</i> Seedlings for Seagrass Restoration Programs: Effect of Sediment Type and Organic Enrichment on Growth. Restoration Ecology, 2013, 21, 250-259.	1.4	50
85	Crustose coralline algal growth, calcification and mortality following a marine heatwave in Western Australia. Continental Shelf Research, 2015, 106, 38-44.	0.9	50
86	Contemporary connectivity is sustained by wind- and current-driven seed dispersal among seagrass meadows. Movement Ecology, 2015, 3, 9.	1.3	49
87	Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis. Marine Pollution Bulletin, 2017, 115, 252-260.	2.3	48
88	Deep Image Representations for Coral Image Classification. IEEE Journal of Oceanic Engineering, 2019, 44, 121-131.	2.1	48
89	Seagrass losses since midâ€20th century fuelled CO ₂ emissions from soil carbon stocks. Global Change Biology, 2020, 26, 4772-4784.	4.2	48
90	Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience. Nature Communications, 2017, 8, 1263.	5.8	47

6

#	Article	IF	CITATIONS
91	Historical processes and contemporary ocean currents drive genetic structure in the seagrass <i><scp>T</scp>halassia hemprichii</i> in the Indoâ€Australian Archipelago. Molecular Ecology, 2017, 26, 1008-1021.	2.0	46
92	Title is missing!. Hydrobiologia, 1999, 398/399, 275-283.	1.0	45
93	EFFECTS OF ISLAND GROUPS, DEPTH, AND EXPOSURE TO OCEAN WAVES ON SUBTIDAL MACROALGAL ASSEMBLAGES IN THE RECHERCHE ARCHIPELAGO, WESTERN AUSTRALIA1. Journal of Phycology, 2004, 40, 631-641.	1.0	45
94	Metagenomic Evidence of Microbial Community Responsiveness to Phosphorus and Salinity Gradients in Seagrass Sediments. Frontiers in Microbiology, 2018, 9, 1703.	1.5	44
95	Measuring fragmentation of seagrass landscapes: which indices are most appropriate for detecting change?. Marine and Freshwater Research, 2005, 56, 851.	0.7	42
96	Marine sponges of the Dampier Archipelago, Western Australia: patterns of species distributions, abundance and diversity. Biodiversity and Conservation, 2006, 15, 3731-3750.	1.2	41
97	Genetic diversity in threatened Posidonia australis seagrass meadows. Conservation Genetics, 2014, 15, 717-728.	0.8	41
98	The interaction of environment and genetic diversity within meadows of the seagrass Posidonia australis (Posidoniaceae). Marine Ecology - Progress Series, 2014, 506, 87-98.	0.9	41
99	Multiâ€scale spatial patterns of three seagrass species with different growth dynamics. Ecography, 2008, 31, 191-200.	2.1	40
100	Combining environmental gradients to explain and predict the structure of demersal fish distributions. Journal of Biogeography, 2010, 37, 593-605.	1.4	40
101	Reproductive synchrony in a habitat-forming kelp and its relationship with environmental conditions. Marine Biology, 2013, 160, 119-126.	0.7	40
102	Identifying critical recruitment bottlenecks limiting seedling establishment in a degraded seagrass ecosystem. Scientific Reports, 2017, 7, 14786.	1.6	40
103	Evolutionary history of the seagrass genus Posidonia. Marine Ecology - Progress Series, 2011, 421, 117-130.	0.9	40
104	Coastal Fish Assemblages Reflect Geological and Oceanographic Gradients Within An Australian Zootone. PLoS ONE, 2013, 8, e80955.	1.1	39
105	Effects of desalination brine and seawater with the same elevated salinity on growth, physiology and seedling development of the seagrass Posidonia australis. Marine Pollution Bulletin, 2019, 140, 462-471.	2.3	39
106	Seasonal Changes in Epiphytic Macro-Algae Assemblages between Offshore Exposed and Inshore Protected Posidonia sinuosa Cambridge et Kuo Seagrass Meadows, Western Australia. Botanica Marina, 1997, 40, .	0.6	38
107	Root microbiomes as indicators of seagrass health. FEMS Microbiology Ecology, 2020, 96, .	1.3	38
108	Environmental Influences on Kelp Performance across the Reproductive Period: An Ecological Trade-Off between Gametophyte Survival and Growth?. PLoS ONE, 2013, 8, e65310.	1.1	37

#	Article	IF	CITATIONS
109	Disturbance Is an Important Driver of Clonal Richness in Tropical Seagrasses. Frontiers in Plant Science, 2017, 8, 2026.	1.7	37
110	Interannual and small-scale spatial variability in sexual reproduction of the seagrasses Posidonia coriacea and Heterozostera tasmanica, southwestern Australia. Aquatic Botany, 2002, 74, 287-297.	0.8	35
111	Benthic assemblage composition on subtidal reefs along a latitudinal gradient in Western Australia. Estuarine, Coastal and Shelf Science, 2010, 86, 83-92.	0.9	35
112	Predation on Posidonia australis seeds in seagrass habitats of Rottnest Island, Western Australia: patterns and predators. Marine Ecology - Progress Series, 2006, 313, 105-114.	0.9	35
113	Effects of dredging on critical ecological processes for marine invertebrates, seagrasses and macroalgae, and the potential for management with environmental windows using Western Australia as a case study. Ecological Indicators, 2017, 78, 229-242.	2.6	34
114	Operationalizing marketable blue carbon. One Earth, 2022, 5, 485-492.	3.6	34
115	Science behind management of Shark Bay and Florida Bay, two P-limited subtropical systems with different climatology and human pressures. Marine and Freshwater Research, 2012, 63, 941.	0.7	33
116	Cable bacteria at oxygenâ€releasing roots of aquatic plants: a widespread and diverse plant–microbe association. New Phytologist, 2021, 232, 2138-2151.	3.5	32
117	Automatic Hierarchical Classification of Kelps Using Deep Residual Features. Sensors, 2020, 20, 447.	2.1	32
118	Benthic Macroalgae of Shark Bay, Western Australia. Botanica Marina, 1990, 33, .	0.6	31
119	Probabilistic large-area mapping of seagrass species distributions. Aquatic Conservation: Marine and Freshwater Ecosystems, 2007, 17, 385-407.	0.9	31
120	Interactions between filamentous turf algae and coralline algae are modified under ocean acidification. Journal of Experimental Marine Biology and Ecology, 2014, 456, 70-77.	0.7	31
121	Isolation by resistance across a complex coral reef seascape. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151217.	1.2	31
122	Reconstruction of centennial-scale fluxes of chemical elements in the Australian coastal environment using seagrass archives. Science of the Total Environment, 2016, 541, 883-894.	3.9	31
123	Microsites play an important role for seedling survival in the seagrass Amphibolis antarctica. Journal of Experimental Marine Biology and Ecology, 2011, 401, 29-35.	0.7	30
124	Reproduction at the extremes: pseudovivipary, hybridization and genetic mosaicism in <i>Posidonia australis</i> (Posidoniaceae). Annals of Botany, 2016, 117, mcv162.	1.4	29
125	Belowground stressors and long-term seagrass declines in a historically degraded seagrass ecosystem after improved water quality. Scientific Reports, 2017, 7, 14469.	1.6	29
126	Effects of sediment burial on tropical ruderal seagrasses are moderated by clonal integration. Continental Shelf Research, 2011, 31, 1945-1954.	0.9	28

#	Article	IF	CITATIONS
127	High Sulfide Intrusion in Five Temperate Seagrasses Growing Under Contrasting Sediment Conditions. Estuaries and Coasts, 2013, 36, 116-126.	1.0	28
128	Changes in distribution of macro-algal epiphytes on stems of the seagrass Amphibolis antarctica along a salinity gradient in Shark Bay, Western Australia. Phycologia, 1988, 27, 201-208.	0.6	27
129	Benthic microalgae and nutrient dynamics in wave-disturbed environments in Marmion Lagoon, Western Australia, compared with less disturbed mesocosms. Journal of Experimental Marine Biology and Ecology, 1998, 228, 83-105.	0.7	27
130	Against the odds: complete outcrossing in a monoecious clonal seagrass Posidonia australis (Posidoniaceae). Annals of Botany, 2014, 113, 1185-1196.	1.4	27
131	Genomic comparison of two independent seagrass lineages reveals habitat-driven convergent evolution. Journal of Experimental Botany, 2018, 69, 3689-3702.	2.4	27
132	Depth moderates loss of marine foundation species after an extreme marine heatwave: could deep temperate reefs act as a refuge?. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200709.	1.2	27
133	Extensive polyploid clonality was a successful strategy for seagrass to expand into a newly submerged environment. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	27
134	Genetic signatures of Bassian glacial refugia and contemporary connectivity in a marine foundation species. Journal of Biogeography, 2016, 43, 2209-2222.	1.4	26
135	A comparative assessment of approaches and outcomes for seagrass revegetation in Shark Bay and Florida Bay. Marine and Freshwater Research, 2012, 63, 984.	0.7	25
136	Seagrass derived organic matter influences biogeochemistry, microbial communities, and seedling biomass partitioning in seagrass sediments. Plant and Soil, 2016, 400, 133-146.	1.8	25
137	Population genetic structure of the Pocillopora damicornis morphospecies along Ningaloo Reef, Western Australia. Marine Ecology - Progress Series, 2014, 513, 111-119.	0.9	25
138	Posidonia australis seed predation in seagrass habitats of Two Peoples Bay, Western Australia. Aquatic Botany, 2007, 86, 83-85.	0.8	24
139	Contrasting responses of seagrass transplants (Posidonia australis) to nitrogen, phosphorus and iron addition in an estuary and a coastal embayment. Journal of Experimental Marine Biology and Ecology, 2009, 371, 34-41.	0.7	24
140	Season and sediment nutrient additions affect root architecture in the temperate seagrasses Posidonia australis and P. sinuosaÂ. Marine Ecology - Progress Series, 2012, 446, 23-30.	0.9	24
141	Seagrass Halophila ovalis is affected by light quality across different life history stages. Marine Ecology - Progress Series, 2017, 572, 103-116.	0.9	24
142	Canopy–understorey relationships are mediated by reef topography in <i>Ecklonia radiata</i> kelp beds. European Journal of Phycology, 2008, 43, 133-142.	0.9	23
143	Spatial Structure of Seagrass Suggests That Size-Dependent Plant Traits Have a Strong Influence on the Distribution and Maintenance of Tropical Multispecies Meadows. PLoS ONE, 2014, 9, e86782.	1.1	23
144	Inorganic Nutrient Supplements Constrain Restoration Potential of Seedlings of the Seagrass, <i>Posidonia australis</i> . Restoration Ecology, 2014, 22, 196-203.	1.4	23

#	Article	IF	CITATIONS
145	Abundance ofRuppia megacarpaMason in a Seasonally Variable Estuary. Estuarine, Coastal and Shelf Science, 1999, 48, 497-509.	0.9	22
146	Spatial patterns in fish herbivory in a temperate Australian seagrass meadow. Estuarine, Coastal and Shelf Science, 2011, 93, 366-374.	0.9	22
147	Turf algal epiphytes metabolically induce local pH increase, with implications for underlying coralline algae under ocean acidification. Estuarine, Coastal and Shelf Science, 2015, 164, 463-470.	0.9	22
148	Phenolic concentrations of brown seaweeds and relationships to nearshore environmental gradients in Western Australia. Marine Biology, 2017, 164, 1.	0.7	22
149	Decline and Restoration Ecology of Australian Seagrasses. , 2018, , 665-704.		22
150	AUV-based classification of benthic communities of the Ningaloo shelf and mesophotic areas. Coral Reefs, 2018, 37, 763-778.	0.9	22
151	Reefs as contributors to diversity of epiphytic macroalgae assemblages in seagrass meadows. Marine Ecology - Progress Series, 2004, 276, 71-83.	0.9	22
152	Re-evaluating species boundaries among members of the Posidonia ostenfeldii species complex (Posidoniaceae) – morphological and genetic variation. Aquatic Botany, 2000, 66, 41-56.	0.8	21
153	Survival of juvenile Ecklonia radiata sporophytes after canopy loss. Journal of Experimental Marine Biology and Ecology, 2007, 349, 170-182.	0.7	21
154	From fronds to fish: the use of indicators for ecological monitoring in marine benthic ecosystems, with case studies from temperate Western Australia. Reviews in Fish Biology and Fisheries, 2011, 21, 311-337.	2.4	21
155	Nutrient status of seagrasses cannot be inferred from system-scale distribution of phosphorus in Shark Bay, Western Australia. Marine and Freshwater Research, 2012, 63, 1015.	0.7	21
156	Ecological significance of seagrasses: Assessment for management of environmental impact in Western Australia. Ecological Engineering, 2001, 16, 323-330.	1.6	20
157	Subtidal macroalgal richness, diversity and turnover, at multiple spatial scales, along the southwestern Australian coastline. Estuarine, Coastal and Shelf Science, 2011, 91, 224-231.	0.9	20
158	Modelling seagrass growth and development to evaluate transplanting strategies for restoration. Annals of Botany, 2011, 108, 1213-1223.	1.4	20
159	Managing seagrass resilience under cumulative dredging affecting light: Predicting risk using dynamic Bayesian networks. Journal of Applied Ecology, 2018, 55, 1339-1350.	1.9	20
160	Cast adrift: Physiology and dispersal of benthic Sargassum spinuligerum in surface rafts. Limnology and Oceanography, 2019, 64, 526-540.	1.6	20
161	Underwater video as a monitoring tool to detect change in seagrass cover. Journal of Environmental Management, 2006, 80, 148-155.	3.8	19
162	A genetic assessment of a successful seagrass meadow (Posidonia australis) restoration trial. Ecological Management and Restoration, 2013, 14, 68-71.	0.7	19

#	Article	IF	CITATIONS
163	Can single classifiers be as useful as model ensembles to produce benthic seabed substratum maps?. Estuarine, Coastal and Shelf Science, 2018, 204, 149-163.	0.9	19
164	The market for sustainable seafood drives transformative change in fishery social-ecological systems. Global Environmental Change, 2019, 57, 101919.	3.6	19
165	Sediment tolerance mechanisms identified in sponges using advanced imaging techniques. PeerJ, 2017, 5, e3904.	0.9	19
166	Assessing biomass, assemblage structure and productivity of algal epiphytes on seagrasses. , 2001, , 199-222.		18
167	Automatic detection of Western rock lobster using synthetic data. ICES Journal of Marine Science, 2020, 77, 1308-1317.	1.2	18
168	Advances in approaches to seagrass restoration in Australia. Ecological Management and Restoration, 2021, 22, 10-21.	0.7	18
169	How does burrowing by the isopod Limnoria agrostisa (Crustacea: Limnoriidae) affect the leaf canopy of the southern Australian seagrass Amphibolis griffithii?. Marine Biology, 2008, 156, 65-77.	0.7	17
170	Seeds in motion: Genetic assignment and hydrodynamic models demonstrate concordant patterns of seagrass dispersal. Molecular Ecology, 2018, 27, 5019-5034.	2.0	17
171	Reproductive, Dispersal and Recruitment Strategies in Australian Seagrasses. , 2018, , 213-256.		17
172	Decline and Recovery of Seagrass Ecosystems—The Dynamics of Change. , 0, , 551-565.		17
173	Characterisation of polymorphic microsatellite markers in the widespread Australian seagrass, Posidonia australis Hook. f. (Posidoniaceae), with cross-amplification in the sympatric P.Asinuosa. Conservation Genetics Resources, 2009, 1, 273-276.	0.4	16
174	Hydrogen sulfide intrusion in seagrasses from Shark Bay, Western Australia. Marine and Freshwater Research, 2012, 63, 1027.	0.7	16
175	Determining light stress responses for a tropical multi-species seagrass assemblage. Marine Pollution Bulletin, 2018, 128, 508-518.	2.3	16
176	Factors influencing distribution and habitat associations in an endemic group of temperate Western Australian reef fishes over a latitudinal gradient. Marine Ecology - Progress Series, 2014, 517, 193-208.	0.9	15
177	Seed dormancy and germination of Halophila ovalis mediated by simulated seasonal temperature changes. Estuarine, Coastal and Shelf Science, 2017, 198, 156-162.	0.9	15
178	Recovery Dynamics of the Seagrass Zostera marina Following Mass Mortalities from Two Extreme Climatic Events. Estuaries and Coasts, 2021, 44, 535-544.	1.0	15
179	Turban snails as habitat for foliose algae: contrasting geographical patterns in species richness. Marine and Freshwater Research, 2010, 61, 1237.	0.7	15

180 Standards for seagrass collection, identification and sample design. , 2001, , 79-100.

14

#	Article	IF	CITATIONS
181	Nutrient dynamics in two seagrass species, Posidonia coriacea and Zostera tasmanica, on Success Bank, Western Australia. Estuarine, Coastal and Shelf Science, 2004, 60, 251-260.	0.9	14
182	Strategy for assessing impacts in ephemeral tropical seagrasses. Marine Pollution Bulletin, 2015, 101, 594-599.	2.3	14
183	In situ oxygen dynamics in rhizomes of the seagrass Posidonia sinuosa: impact of light, water column oxygen, current speed and wave velocity. Marine Ecology - Progress Series, 2018, 590, 67-77.	0.9	14
184	Direct measurements of root growth and productivity in the seagrasses Posidonia australis and P. sinuosa. Limnology and Oceanography, 2011, 56, 394-402.	1.6	13
185	Colonizing tropical seagrasses increase root exudation under fluctuating and continuous low light. Limnology and Oceanography, 2018, 63, S381.	1.6	13
186	A review of protocols for the experimental release of kelp (Laminariales) zoospores. Ecology and Evolution, 2019, 9, 8387-8398.	0.8	13
187	Key attributes related to fishery improvement project (<scp>FIP</scp>) effectiveness in promoting improvements towards sustainability. Fish and Fisheries, 2019, 20, 452-465.	2.7	13
188	A sediment bioturbator bottleneck to seedling recruitment for the seagrass Posidonia australis. Marine Ecology - Progress Series, 2018, 595, 89-103.	0.9	13
189	Naturally-detached fragments of the endangered seagrass Posidonia australis collected by citizen scientists can be used to successfully restore fragmented meadows. Biological Conservation, 2021, 262, 109308.	1.9	12
190	Impact of Marine Heatwaves on Seagrass Ecosystems. Ecological Studies, 2021, , 345-364.	0.4	12
191	Neighbour and environmental influences on the growth patterns of two temperate Haliclonid sponges. Marine and Freshwater Research, 2008, 59, 304.	0.7	11
192	Nesting behaviour of a temperate damselfish (<i>Parma mccullochi</i>) and its influence on algae. Marine and Freshwater Behaviour and Physiology, 2013, 46, 169-182.	0.4	11
193	How does spatial resolution affect model performance? A case for ensemble approaches for marine benthic mesophotic communities. Journal of Biogeography, 2019, 46, 1249-1259.	1.4	11
194	Composition of Seagrass Root Associated Bacterial Communities Are Linked to Nutrients and Heavy Metal Concentrations in an Anthropogenically Influenced Estuary. Frontiers in Marine Science, 2022, 8, .	1.2	11
195	Shifts in composition of microbial communities of subtidal sandy sediments maximise retention of nutrients. FEMS Microbiology Ecology, 2013, 83, 279-298.	1.3	10
196	Dynamic Bayesian Network Inferencing for Non-Homogeneous Complex Systems. Journal of the Royal Statistical Society Series C: Applied Statistics, 2018, 67, 417-434.	0.5	10
197	Drivers of species richness and abundance of marine macrophytes on shallow tropical reefs of northâ€western Australia. Journal of Biogeography, 2019, 46, 170-184.	1.4	10
198	A novel adaptation facilitates seed establishment under marine turbulent flows. Scientific Reports, 2019, 9, 19693.	1.6	10

#	Article	IF	CITATIONS
199	Edge Effects along a Seagrass Margin Result in an Increased Grazing Risk on Posidonia australis Transplants. PLoS ONE, 2015, 10, e0137778.	1.1	9
200	Benthic microalgae: comparisons of chlorophyll a in mesocosms and field sites. Hydrobiologia, 1996, 326-327, 283-289.	1.0	8
201	Salinity stress drives herbivory rates and selective grazing in subtidal seagrass communities. PLoS ONE, 2019, 14, e0214308.	1.1	8
202	Variation in reproductive effort, genetic diversity and mating systems across Posidonia australis seagrass meadows in Western Australia. AoB PLANTS, 2020, 12, plaa038.	1.2	8
203	Do surrogates describe patterns in marine macroalgal diversity in the Recherche Archipelago, temperate Australia?. Aquatic Conservation: Marine and Freshwater Ecosystems, 2006, 16, 313-327.	0.9	7
204	Severe loss of anemones and anemonefishes from a premier tourist attraction at the Houtman Abrolhos Islands, Western Australia. Marine Biodiversity, 2015, 45, 143-144.	0.3	7
205	Short-term Responses of Posidonia australis to Changes in Light Quality. Frontiers in Plant Science, 2017, 8, 2224.	1.7	7
206	Sponges in shallow tropical and temperate reefs are important habitats for marine invertebrate biodiversity. Marine Biology, 2020, 167, 1.	0.7	7
207	Influence of Ecklonia radiata kelp canopy on structure of macro-algal assemblages in Marmion Lagoon, Western Australia. , 1999, , 275-283.		7
208	Highway or country road: algal recruitment with distance from an island reef. Journal of the Marine Biological Association of the United Kingdom, 2004, 84, 879-882.	0.4	6
209	First report of hybridization in the seagrass genus Posidonia (Posidoniaceae). Aquatic Botany, 2019, 156, 10-13.	0.8	6
210	Decline and Recovery of Seagrass Ecosystemsâ \in " The Dynamics of Change. , 2007, , 551-565.		6
211	The epiphyte Microcladia coulteri (Rhodophyta): changes in population structure with spatial and temporal variation in availability of host species. Marine Ecology - Progress Series, 1988, 43, 79-86.	0.9	6
212	Benthic microalgae: comparisons of chlorophyll a in mesocosms and field sites. , 1996, , 283-289.		6
213	The effect of kelp bed disturbance on the abundance and feeding behaviour of fishes on high-relief reefs. Marine and Freshwater Behaviour and Physiology, 2010, 43, 109-125.	0.4	5
214	Effects of shelter and enrichment on the ecology and nutrient cycling of microbial communities of subtidal carbonate sediments. FEMS Microbiology Ecology, 2012, 80, 64-76.	1.3	5
215	Temperate territorial damselfish act like tropical damselfish, but have no measurable effect on algae within their feeding areas. Journal of Experimental Marine Biology and Ecology, 2015, 472, 107-118.	0.7	5
216	Global Warming and Ocean Acidification: Effects on Australian Seagrass Ecosystems. , 2018, , 705-742.		5

#	Article	IF	CITATIONS
217	Seagrasses of Southern and South-Western Australia. , 2018, , 61-89.		5
218	Reproductive Output, Synchrony across Depth and Influence of Source Depth in the Development of Early Life stages of Kelp. Journal of Phycology, 2021, 57, 311-323.	1.0	5
219	Temperature Stratification and Monochromatic Light Break Dormancy and Facilitate On-Demand In Situ Germination in the Seagrass Halophila ovalis, with Seed Viability Determined by a Novel X-Ray Analysis. Estuaries and Coasts, 2021, 44, 412-421.	1.0	5
220	Regional-scale patterns of mobile invertebrate assemblage structure on artificial habitats off Western Australia. Journal of Experimental Marine Biology and Ecology, 2014, 453, 43-53.	0.7	4
221	Comment on †Seagrass Viviparous Propagules as a Potential Long-Distance Dispersal Mechanism' by A. C. G. Thomson et al Estuaries and Coasts, 2016, 39, 290-293.	1.0	3
222	Analysing the dynamics and relative influence of variables affecting ecosystem responses using functional PCA and boosted regression trees: A seagrass case study. Methods in Ecology and Evolution, 2019, 10, 1723-1733.	2.2	3
223	The Risk of Multiple Anthropogenic and Climate Change Threats Must Be Considered for Continental Scale Conservation and Management of Seagrass Habitat. Frontiers in Marine Science, 2022, 9, .	1.2	3
224	Influence of Sargassum spp. Attached to Rhodoliths on Sampling Effort and Demographic Analyses of Sargassum spp. (Sargassaceae, Phaeophyta) Attached to a Reef. Botanica Marina, 1997, 40, .	0.6	2
225	Description of a Remote Still Photography System for Collection of Benthic Photo-Quadrats. Marine Technology Society Journal, 2010, 44, 56-63.	0.3	2
226	Disturbance and reef topography maintain high local diversity in Ecklonia radiata kelp forests. Oikos, 2007, 116, 1618-1630.	1.2	2
227	Effect of climate change on regeneration of seagrasses from seeds. , 2022, , 275-283.		2
228	Australian Seagrass Seascapes: Present Understanding and Future Research Directions. , 2018, , 257-286.		1
229	Susan Lynn Williams: the Life of an Exceptional Scholar, Leader, and Friend (1951–2018). Estuaries and Coasts, 2021, 44, 304-311.	1.0	1
230	Marine ecological processes, 2nd Edn Aquatic Botany, 1996, 53, 253-254.	0.8	0
231	Predictors of marine genetic structure in the Indo-Australian Archipelago. Regional Studies in Marine Science, 2021, 47, 101919.	0.4	0
232	Effects of propagule settlement density and adult canopy on survival of recruits of Sargassum spp. (Sargassaceae: Phaeophyta). Marine Ecology - Progress Series, 1994, 104, 129-140.	0.9	0