Chi-Ling Chiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2526773/publications.pdf Version: 2024-02-01

		430874	454955
37	1,444	18	30
papers	citations	h-index	g-index
39	39	39	2428
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nature Biomedical Engineering, 2020, 4, 69-83.	22.5	415
2	Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation. Journal of Controlled Release, 2016, 243, 160-171.	9.9	152
3	Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy. Lab on A Chip, 2015, 15, 3147-3153.	6.0	92
4	3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control. Nanoscale, 2016, 8, 243-252.	5.6	88
5	Magnetic Tweezers-Based 3D Microchannel Electroporation for High-Throughput Gene Transfection in Living Cells. Small, 2015, 11, 1818-1828.	10.0	83
6	Controllable Large-Scale Transfection of Primary Mammalian Cardiomyocytes on a Nanochannel Array Platform. Small, 2016, 12, 5971-5980.	10.0	64
7	Modeling of cancer metastasis and drug resistance via biomimetic nano-cilia and microfluidics. Biomaterials, 2014, 35, 1562-1571.	11.4	59
8	Targeting the RAS/MAPK pathway with <i>miR-181a</i> in acute myeloid leukemia. Oncotarget, 2016, 7, 59273-59286.	1.8	50
9	Dielectrophoresis-based cellular microarray chip for anticancer drug screening in perfusion microenvironments. Lab on A Chip, 2011, 11, 2333.	6.0	48
10	Configurable 2D and 3D spheroid tissue cultures on bioengineered surfaces with acquisition of epithelial–mesenchymal transition characteristics. NPG Asia Materials, 2012, 4, e27-e27.	7.9	41
11	Micro-/nano-electroporation for active gene delivery. Current Pharmaceutical Design, 2015, 21, 6081-6088.	1.9	40
12	Lysophosphatidic Acid Induces Erythropoiesis through Activating Lysophosphatidic Acid Receptor 3. Stem Cells, 2011, 29, 1763-1773.	3.2	38
13	Indole-3-carbinol inhibits tumorigenicity of hepatocellular carcinoma cells via suppression of microRNA-21 and upregulation of phosphatase and tensin homolog. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 244-253.	4.1	38
14	Tumor antigen ROR1 targeted drug delivery mediated selective leukemic but not normal B-cell cytotoxicity in chronic lymphocytic leukemia. Leukemia, 2015, 29, 346-355.	7.2	36
15	ROR1-targeted delivery of miR-29b induces cell cycle arrest and therapeutic benefit in vivo in a CLL mouse model. Blood, 2019, 134, 432-444.	1.4	32
16	A Novel 96well-formatted Micro-gap Plate Enabling Drug Response Profiling on Primary Tumour Samples. Scientific Reports, 2015, 5, 9656.	3.3	25
17	From Nanoparticles to Cancer Nanomedicine: Old Problems with New Solutions. Nanomaterials, 2021, 11, 1727.	4.1	25
18	Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis. Scientific Reports, 2016, 6, 27050.	3.3	22

CHI-LING CHIANG

#	Article	IF	CITATIONS
19	Detection of Circulating Endothelial Cells via a Microfluidic Disk. Clinical Chemistry, 2011, 57, 586-592.	3.2	18
20	ROR1-targeted delivery of OSU-2S, a nonimmunosuppressive FTY720 derivative, exerts potent cytotoxicity in mantle-cell lymphoma inÂvitro and inÂvivo. Experimental Hematology, 2015, 43, 770-774.e2.		16
21	CLEAR: coverage-based limiting-cell experiment analysis for RNA-seq. Journal of Translational Medicine, 2020, 18, 63.	4.4	11
22	Induced Apoptosis Investigation in Wild-type and FLT3-ITD Acute Myeloid Leukemia Cells by Nanochannel Electroporation and Single-cell qRT-PCR. Molecular Therapy, 2016, 24, 956-964.	8.2	10
23	The ROR1 antibody-drug conjugate huXBR1-402-G5-PNU effectively targets ROR1+ leukemia. Blood Advances, 2021, 5, 3152-3162.	5.2	9
24	Opposing regulation of megakaryopoiesis by LPA receptors 2 and 3 in K562 human erythroleukemia cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 172-183.	2.4	8
25	Microfluidic harvesting of breast cancer tumor spheroid-derived extracellular vesicles from immobilized microgels for single-vesicle analysis. Lab on A Chip, 2022, 22, 2502-2518.	6.0	8
26	Bosch etching for the creation of a 3D nanoelectroporation system for high throughput gene delivery. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33,	1.2	6
27	ROR1 targeted immunoliposomal delivery of OSU-2S shows selective cytotoxicity in t(1;19)(q23;p13) translocated B-cell acute lymphoblastic leukemia. Leukemia Research, 2022, 118, 106872.	0.8	2
28	Nanofabrication: Controllable Large-Scale Transfection of Primary Mammalian Cardiomyocytes on a Nanochannel Array Platform (Small 43/2016). Small, 2016, 12, 5914-5914.	10.0	1
29	Tumor Antigen ROR1 Targeted Delivery Of FTY720 Derivative OSU-2S Prolongs Survival In ROR1 Engineered Mouse Model Of Chronic Lymphocytic Leukemia. Blood, 2013, 122, 4168-4168.	1.4	1
30	Nonviral Transfection Methods of Efficient Gene Delivery: Micro-/Nano-Technology for Electroporation. , 2016, , 175-218.		0
31	LPA Induces Erythropoiesis Process Through Activating LPA Receptor 3. FASEB Journal, 2011, 25, 1043.4.	0.5	0
32	S1P Induces Lymphangiogenesis Through a MMPâ€2/FGFRâ€1â€dependent Pathway in Human Umbilical Vein Endothelial Cells. FASEB Journal, 2011, 25, 1091.3.	0.5	0
33	Abstract 4406: ROR1 targeted delivery of OSU-2S, a non-immunosuppressive FTY720 derivative, exerts potent cytotoxicity in mantle cell lymphomain-vitroandin-vivo. , 2015, , .		0
34	Immunoliposomal Delivery of Mir-29b By Targeting Tumor Antigen ROR1 Induces Epigenetic Reprograming in Human-ROR1-Expressed Mouse Model of Chronic Lymphocytic Leukemia. Blood, 2015, 126, 1743-1743.	1.4	0
35	CD33 Targeted Immunoliposomal Delivery of OSU-2S, a Non-Immunosuppressive FTY720 Derivative, Mediates Selective Cytotoxicity in Acute Myeloid Leukemia. Blood, 2016, 128, 2748-2748.	1.4	0
36	LC-Facseq: A Novel Method for Detecting Rare Resistant Clones in Leukemia. Blood, 2019, 134, 3377-3377.	1.4	0

#	Article	IF	CITATIONS
37	ROR1 Targeted Immunoliposomal Delivery of OSU-2S Show Selective Cytotoxicity in t(1;19) Translocated B-ALL. Blood, 2019, 134, 3798-3798.	1.4	Ο