
Simona Greco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2526662/publications.pdf Version: 2024-02-01

SIMONA CRECO

#	Article	IF	CITATIONS
1	miR-210 hypoxamiR in Angiogenesis and Diabetes. Antioxidants and Redox Signaling, 2022, 36, 685-706.	2.5	12
2	Regulatory RNAs in cardiovascular disease. , 2021, , 127-162.		0
3	Hypoxia-induced miR-210 modulates the inflammatory response and fibrosis upon acute ischemia. Cell Death and Disease, 2021, 12, 435.	2.7	8
4	Noncoding RNAs implication in cardiovascular diseases in the COVID-19 era. Journal of Translational Medicine, 2020, 18, 408.	1.8	16
5	Long Noncoding Competing Endogenous RNA Networks in Age-Associated Cardiovascular Diseases. International Journal of Molecular Sciences, 2019, 20, 3079.	1.8	43
6	Long Noncoding RNAs and Cardiac Disease. Antioxidants and Redox Signaling, 2018, 29, 880-901.	2.5	64
7	Circular RNAs in Muscle Function and Disease. International Journal of Molecular Sciences, 2018, 19, 3454.	1.8	76
8	A Breath of Fresh Air(n) in Molecular Cardiology. Circulation Research, 2018, 122, 1321-1323.	2.0	4
9	Increased BACE1-AS long noncoding RNA and β-amyloid levels in heart failure. Cardiovascular Research, 2017, 113, 453-463.	1.8	72
10	The expression of the BPIFB4 and CXCR4 associates with sustained health in long-living individuals from Cilento-Italy. Aging, 2017, 9, 370-380.	1.4	28
11	Validation of plasma microRNAs as biomarkers for myotonic dystrophy type 1. Scientific Reports, 2016, 6, 38174.	1.6	49
12	Implication of Long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing. Scientific Reports, 2016, 6, 24141.	1.6	124
13	microRNAs in ischaemic cardiovascular diseases. European Heart Journal Supplements, 2016, 18, E31-E36.	0.0	9
14	Long noncoding RNA dysregulation in ischemic heart failure. Journal of Translational Medicine, 2016, 14, 183.	1.8	176
15	Noncoding RNA in age-related cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 2015, 83, 142-155.	0.9	99
16	Genome Wide Identification of Aberrant Alternative Splicing Events in Myotonic Dystrophy Type 2. PLoS ONE, 2014, 9, e93983.	1.1	27
17	Nitric Oxide, Oxidative Stress, and <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:msup><mml:mrow><mml:mtext>p</mml:mtext><mml:mtext>66</mml:mtext> in Diabetic Endothelial Dysfunction. BioMed Research International, 2014, 2014, 1-16.</mml:mrow></mml:msup></mml:mrow></mml:math>	/mm b:19 row	⊳<ໝentimrow
18	Hypoxia-Induced miR-210 Modulates Tissue Response to Acute Peripheral Ischemia. Antioxidants and Redox Signaling, 2014, 21, 1177-1188.	2.5	47

SIMONA GRECO

#	Article	IF	CITATIONS
19	Emerging Roles of Non-Coding RNAs in the Hypoxic Response. Cancer Drug Discovery and Development, 2014, , 43-64.	0.2	3
20	MiR-216a: a link between endothelial dysfunction and autophagy. Cell Death and Disease, 2014, 5, e1029-e1029.	2.7	122
21	HypoxamiR Regulation and Function in Ischemic Cardiovascular Diseases. Antioxidants and Redox Signaling, 2014, 21, 1202-1219.	2.5	79
22	Epigenetic mechanisms of hyperglycemic memory. International Journal of Biochemistry and Cell Biology, 2014, 51, 155-158.	1.2	39
23	MicroRNAs in Hypoxia Response. Antioxidants and Redox Signaling, 2014, 21, 1164-1166.	2.5	31
24	Plasma microRNAs as biomarkers for myotonic dystrophy type 1. Neuromuscular Disorders, 2014, 24, 509-515.	0.3	63
25	Oxidative Stress and MicroRNAs in Vascular Diseases. International Journal of Molecular Sciences, 2013, 14, 17319-17346.	1.8	161
26	MicroRNA Dysregulation in Diabetic Ischemic Heart Failure Patients. Diabetes, 2012, 61, 1633-1641.	0.3	206
27	Deregulated MicroRNAs in Myotonic Dystrophy Type 2. PLoS ONE, 2012, 7, e39732.	1.1	81
28	Dysregulation and cellular mislocalization of specific miRNAs in myotonic dystrophy type 1. Neuromuscular Disorders, 2011, 21, 81-88.	0.3	109
29	miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death and Differentiation, 2011, 18, 1628-1639.	5.0	399
30	miRâ€210: More than a silent player in hypoxia. IUBMB Life, 2011, 63, 94-100.	1.5	196
31	microRNA: Emerging therapeutic targets in acute ischemic diseases. , 2010, 125, 92-104.		166
32	MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiological Genomics, 2010, 42, 420-426.	1.0	123
33	An Integrated Approach for Experimental Target Identification of Hypoxia-induced miR-210. Journal of Biological Chemistry, 2009, 284, 35134-35143.	1.6	248
34	Common microâ€RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB Journal, 2009, 23, 3335-3346.	0.2	235
35	Protein kinase C (PKC)-Î′l-ε mediate the PKC/Akt-dependent phosphorylation of extracellular signal-regulated kinases 1 and 2 in MCF-7 cells stimulated by bradykinin. Journal of Endocrinology, 2006, 188, 79-89.	1.2	54
36	Effects of extracellular nucleotides in the thyroid: P2Y2 receptor-mediated ERK1/2 activation and c-Fos induction in PC Cl3 cells. Cellular Signalling, 2005, 17, 739-749.	1.7	18

SIMONA GRECO

#	Article	IF	CITATIONS
37	Bradykinin stimulates cell proliferation through an extracellular-regulated kinase 1 and 2-dependent mechanism in breast cancer cells in primary culture. Journal of Endocrinology, 2005, 186, 291-301.	1.2	47
38	Differential signalling of purinoceptors in HeLa cells through the extracellular signal-regulated kinase and protein kinase C pathways. Journal of Cellular Physiology, 2004, 200, 428-439.	2.0	26
39	Mitogenic signalling by B2 bradykinin receptor in epithelial breast cells. Journal of Cellular Physiology, 2004, 201, 84-96.	2.0	45
40	Activation of P2Y2 purinoceptor inhibits the activity of the Na+/K+-ATPase in HeLa cells. Cellular Signalling, 2003, 15, 115-121.	1.7	17
41	Disturbances in purinergic [Ca2+]i signaling pathways in a transformed rat thyroid cell line. Cell Calcium, 2003, 33, 59-68.	1.1	8
42	Activation of P2Y2 receptor induces c-FOS protein through a pathway involving mitogen-activated protein kinases and phosphoinositide 3-kinases in HeLa cells. Journal of Cellular Physiology, 2003, 195, 234-240.	2.0	45
43	Angiotensin II activates extracellular signal regulated kinases via protein kinase C and epidermal growth factor receptor in breast cancer cells. Journal of Cellular Physiology, 2003, 196, 370-377.	2.0	106
44	PKC-? is required for angiotensin II-induced activation of ERK and synthesis of C-FOS in MCF-7 cells. Journal of Cellular Physiology, 2003, 197, 61-68.	2.0	50
45	Angiotensin II AT1 receptor stimulates Na + –k + atpase activity through a pathway involving pkcâ€Î¶ in rat thyroid cells. Journal of Physiology, 2003, 546, 461-470.	1.3	16
46	Angiotensin II stimulation of Na+/K+ATPase activity and cell growth by calcium-independent pathway in MCF-7 breast cancer cells. Journal of Endocrinology, 2002, 173, 315-323.	1.2	96
47	Muscarinic acetylcholine receptor activation induces Ca2+ mobilization and Na+/K+-ATPase activity inhibition in eel enterocytes. Journal of Endocrinology, 2002, 173, 325-334.	1.2	3
48	Activation of angiotensin II type I receptor promotes protein kinase C translocation and cell proliferation in human cultured breast epithelial cells. Journal of Endocrinology, 2002, 174, 205-214.	1.2	35
49	AT1 Angiotensin II receptor mediates intracellular calcium mobilization in normal and cancerous breast cells in primary culture. Cell Calcium, 2002, 32, 1-10.	1.1	25
50	Increase of [Ca2+]i via activation of ATP receptors in PC-Cl3 rat thyroid cell line. Cellular Signalling, 2002, 14, 61-67.	1.7	25
51	Na+/K+ATPase activity inhibition and isoform-specific translocation of protein kinase C following angiotensin II administration in isolated eel enterocytes. Journal of Endocrinology, 2001, 168, 339-346.	1.2	19
52	Co-expression of thymidine kinase and cathepsin D in 200 primary breast carcinomas. Cancer Letters, 2000, 160, 13-19.	3.2	5
53	Relationships between tamoxifen binding proteins in primary breast cancer biopsies. European Journal of Cancer, 1994, 30, 1694-1700.	1.3	4
54	P53 associated with cathepsin D in primary breast cancer. International Journal of Clinical and Laboratory Research, 1993, 23, 102-108.	1.0	6

#	Article	IF	CITATIONS
55	Transcriptionally active non-ligand binding oestrogen receptors in breast cancer. Cancer Letters, 1992, 66, 183-191.	3.2	4
56	Relation of cathepsin D level to the estrogen receptor in human breast cancer. International Journal of Clinical and Laboratory Research, 1992, 22, 52-57.	1.0	16