
Johan Van Lint

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2526582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glycogen synthase kinaseâ€3 and the Alzheimerâ€like state of microtubuleâ€associated protein tau. FEBS Letters, 1992, 314, 315-321.	2.8	475
2	Molecular cloning and characterization of protein kinase D: a target for diacylglycerol and phorbol esters with a distinctive catalytic domain Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8572-8576.	7.1	376
3	Protein Kinase D Regulates the Fission of Cell Surface Destined Transport Carriers from the Trans-Golgi Network. Cell, 2001, 104, 409-420.	28.9	343
4	Essential Role for Protein Kinase B (PKB) in Insulin-induced Clycogen Synthase Kinase 3 Inactivation. Journal of Biological Chemistry, 1998, 273, 13150-13156.	3.4	321
5	Gβγ-Mediated Regulation of Golgi Organization Is through the Direct Activation of Protein Kinase D. Cell, 1999, 98, 59-68.	28.9	265
6	Protein kinase D: an intracellular traffic regulator on the move. Trends in Cell Biology, 2002, 12, 193-200.	7.9	220
7	Protein kinase D: a family affair. FEBS Letters, 2003, 546, 81-86.	2.8	198
8	Expression and Characterization of PKD, a Phorbol Ester and Diacylglycerol-stimulated Serine Protein Kinase. Journal of Biological Chemistry, 1995, 270, 1455-1461.	3.4	164
9	Molecular Cloning and Characterization of the Human Protein Kinase D2. Journal of Biological Chemistry, 2001, 276, 3310-3318.	3.4	163
10	Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor–induced Nur77 expression and apoptosis. Journal of Experimental Medicine, 2005, 201, 793-804.	8.5	154
11	Recruitment of protein kinase D to the trans-Golgi network via the first cysteine-rich domain. EMBO Journal, 2001, 20, 5982-5990.	7.8	150
12	Protein Kinase D Controls Actin Polymerization and Cell Motility through Phosphorylation of Cortactin. Journal of Biological Chemistry, 2010, 285, 18672-18683.	3.4	109
13	Neonatal neuronal overexpression of glycogen synthase kinase-3Î ² reduces brain size in transgenic mice. Neuroscience, 2002, 113, 797-808.	2.3	102
14	Regulation of Protein Kinase D by Multisite Phosphorylation. Journal of Biological Chemistry, 2000, 275, 19567-19576.	3.4	79
15	Protein Kinase D2 Mediates Activation of Nuclear Factor κB by Bcr-Abl in Bcr-Abl+ Human Myeloid Leukemia Cells. Cancer Research, 2004, 64, 8939-8944.	0.9	76
16	Control of MT1-MMP transport by atypical PKC during breast-cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1872-9.	7.1	76
17	Casein Kinase-1 Phosphorylates the p75 Tumor Necrosis Factor Receptor and Negatively Regulates Tumor Necrosis Factor Signaling for Apoptosis. Journal of Biological Chemistry, 1995, 270, 23293-23299.	3.4	72
18	Platelet-derived Growth Factor Stimulates Protein Kinase D through the Activation of Phospholipase Cγ and Protein Kinase C. Journal of Biological Chemistry, 1998, 273, 7038-7043.	3.4	71

Johan Van Lint

#	Article	IF	CITATIONS
19	Inhibition of epidermal growth factor receptor tyrosine kinase activity by hypericin. Biochemical Pharmacology, 1993, 46, 1929-1936.	4.4	70
20	Protein kinase D2 is a crucial regulator of tumour cell-endothelial cell communication in gastrointestinal tumours. Gut, 2010, 59, 1316-1330.	12.1	68
21	Activation of Hematopoietic Progenitor Kinase 1 Involves Relocation, Autophosphorylation, and Transphosphorylation by Protein Kinase D1. Molecular and Cellular Biology, 2005, 25, 2364-2383.	2.3	57
22	Role of the Regulatory Domain of Protein Kinase D2 in Phorbol Ester Binding, Catalytic Activity, and Nucleocytoplasmic Shuttling. Molecular Biology of the Cell, 2005, 16, 4375-4385.	2.1	54
23	Mechanism of Activation of Protein Kinase D2(PKD2) by the CCKB/Gastrin Receptor. Journal of Biological Chemistry, 2002, 277, 29431-29436.	3.4	53
24	Protein Kinase D Induces Transcription through Direct Phosphorylation of the cAMP-response Element-binding Protein. Journal of Biological Chemistry, 2007, 282, 14777-14787.	3.4	52
25	HSP90 Supports Tumor Growth and Angiogenesis through PRKD2 Protein Stabilization. Cancer Research, 2014, 74, 7125-7136.	0.9	52
26	Protein phosphatase-1 is a novel regulator of the interaction between IRBIT and the inositol 1,4,5-trisphosphate receptor. Biochemical Journal, 2007, 407, 303-311.	3.7	51
27	Phosphorylation at Ser244 by CK1 determines nuclear localization and substrate targeting of PKD2. EMBO Journal, 2007, 26, 4619-4633.	7.8	47
28	PKCε–PKD1 signaling complex at Z-discs plays a pivotal role in the cardiac hypertrophy induced by G-protein coupling receptor agonists. Biochemical and Biophysical Research Communications, 2005, 327, 1105-1113.	2.1	44
29	Getting to know protein kinase D. International Journal of Biochemistry and Cell Biology, 2002, 34, 577-581.	2.8	42
30	<i>Trypanosoma cruzi</i> extracellular amastigotes trigger the protein kinase D1-cortactin-actin pathway during cell invasion. Cellular Microbiology, 2015, 17, 1797-1810.	2.1	38
31	Protein kinase D2 is a novel regulator of glioblastoma growth and tumor formation. Neuro-Oncology, 2011, 13, 710-724.	1.2	36
32	Distinct transduction mechanisms of cyclooxygenase 2 gene activation in tumour cells after photodynamic therapy. Oncogene, 2005, 24, 2981-2991.	5.9	35
33	Ligand Structure-Activity Requirements and Phospholipid Dependence for the Binding of Phorbol Esters to Protein Kinase D. Molecular Pharmacology, 2003, 64, 1342-1348.	2.3	28
34	Loss of ADAMTS5 enhances brown adipose tissue mass and promotes browning of white adipose tissue via CREB signaling. Molecular Metabolism, 2017, 6, 715-724.	6.5	26
35	Characterization of cortactin as an in vivo protein kinase D substrate: Interdependence of sites and potentiation by Src. Cellular Signalling, 2009, 21, 253-263.	3.6	24
36	Characterization of EVL-I as a protein kinase D substrate. Cellular Signalling, 2009, 21, 282-292.	3.6	23

Johan Van Lint

#	Article	IF	CITATIONS
37	Doxorubicin-induced activation of protein kinase D1 through caspase-mediated proteolytic cleavage: identification of two cleavage sites by microsequencing. Cellular Signalling, 2004, 16, 703-709.	3.6	22
38	Protein Kinase D Regulates RhoA Activity via Rhotekin Phosphorylation. Journal of Biological Chemistry, 2012, 287, 9473-9483.	3.4	22
39	Function and Regulation of Protein Kinase D in Oxidative Stress: A Tale of Isoforms. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-10.	4.0	21
40	Protein kinase D increases maximal Ca ²⁺ -activated tension of cardiomyocyte contraction by phosphorylation of cMyBP-C-Ser ³¹⁵ . American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H323-H331.	3.2	20
41	Protein kinase D2: a versatile player in cancer biology. Oncogene, 2018, 37, 1263-1278.	5.9	20
42	A novel splice variant of calcium and integrin-binding protein 1 mediates protein kinase D2-stimulated tumour growth by regulating angiogenesis. Oncogene, 2014, 33, 1167-1180.	5.9	19
43	Cortactin is a scaffolding platform for the E-Cadherin adhesion complex controlled by protein kinase D1 phosphorylation. Journal of Cell Science, 2016, 129, 2416-29.	2.0	15
44	Differential regulation of PKD isoforms in oxidative stress conditions through phosphorylation of a conserved Tyr in the P+1 loop. Scientific Reports, 2017, 7, 887.	3.3	15
45	In vitro polarized transport of L-phenylalanine in human nasal epithelium and partial characterization of the amino acid transporters involved. Pharmaceutical Research, 2003, 20, 1125-1132.	3.5	14
46	High affinity receptor for IgE stimulation activates protein kinase D augmenting activator protein-1 activity for cytokine producing in mast cells. International Immunopharmacology, 2010, 10, 277-283.	3.8	14
47	Design, synthesis and biological evaluation of pyrazolo[3,4-d]pyrimidine-based protein kinase D inhibitors. European Journal of Medicinal Chemistry, 2020, 205, 112638.	5.5	14
48	Interleukin-8 activates microtubule-associated protein 2 kinase (ERK1) in human neutrophils. Molecular and Cellular Biochemistry, 1993, 127-128, 171-177.	3.1	13
49	Discovery of a potent protein kinase D inhibitor: insights in the binding mode of pyrazolo[3,4-d]pyrimidine analogues. MedChemComm, 2017, 8, 640-646.	3.4	10
50	Developments in the Discovery and Design of Protein Kinase D Inhibitors. ChemMedChem, 2021, 16, 2158-2171.	3.2	8
51	Interaction of myelin basic protein with the different components of the ATP, Mg-dependent protein phosphatase system. FEBS Letters, 1987, 211, 190-194.	2.8	7
52	Early responses in mitogenic signaling, bombesin induced protein phosphorylations in Swiss 3T3 cells. Advances in Enzyme Regulation, 1993, 33, 143-155.	2.6	6
53	An Enzyme-Linked Immunosorbent Assay for Protein Kinase D Activity Using Phosphorylation Site-Specific Antibodies. Assay and Drug Development Technologies, 2007, 5, 637-644.	1.2	6
54	LSA-50 paper: An alternative to P81 phosphocellulose paper for radiometric protein kinase assays. Analytical Biochemistry, 2021, 630, 114313.	2.4	6

#	Article	IF	CITATIONS
55	Protein kinase D displays intrinsic Tyr autophosphorylation activity: insights into mechanism and regulation. FEBS Letters, 2018, 592, 2432-2443.	2.8	5
56	Interleukin-8 activates microtubule-associated protein 2 kinase (ERK1) in human neutrophils. , 1993, , 171-177.		0