
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2526521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ozone as an alternative decontamination process for N95 facemask and biosafety gowns. Materials Letters, 2022, 311, 131554.	1.3	4
2	AlCrVN coatings deposited by cathodic arc: Friction and wear properties evaluated using reciprocating sliding test. Surface and Coatings Technology, 2022, 442, 128140.	2.2	5
3	Synergistic photocatalytic effect of BiOBr–BiOI heterojunctions due to appropriate layer stacking. Dalton Transactions, 2022, 51, 2413-2427.	1.6	6
4	Surface Functionalization of Mesoporous Co3O4 and MnOx with Sodium for the Soot Oxidation Reaction. Topics in Catalysis, 2022, 65, 766-778.	1.3	2
5	Degradation Behavior and Mechanical Integrity of a Mg-0.7Zn-0.6Ca (wt.%) Alloy: Effect of Grain Sizes and Crystallographic Texture. Materials, 2022, 15, 3142.	1.3	3
6	Hydrazine modified g-C3N4 with enhanced photocatalytic activity for degradation of indigo carmine. Materials Science in Semiconductor Processing, 2022, 150, 106900.	1.9	2
7	Microparticles of α-Bi2O3 Obtained from Bismuth Basic Nitrate [Bi6O6(OH)2(NO3)4·2H2O] with Photocatalytic Properties. Topics in Catalysis, 2021, 64, 121-130.	1.3	4
8	Characterization of Ti electrodes electrophoretically coated with IrO2-Ta2O5 films with different Ir:Ta molar ratios. Journal of Alloys and Compounds, 2021, 862, 158015.	2.8	10
9	Interpretation of the Raman spectra of bismuth oxide thin films presenting different crystallographic phases. Journal of Alloys and Compounds, 2021, 853, 157245.	2.8	30
10	Bismuth subsalicylate incorporated in polycaprolactone-gelatin membranes by electrospinning to prevent bacterial colonization. Biomedical Materials (Bristol), 2021, 16, 045036.	1.7	5
11	Biocompatibility and electrochemical evaluation of ZrO2 thin films deposited by reactive magnetron sputtering on MgZnCa alloy. Journal of Magnesium and Alloys, 2021, 9, 2019-2038.	5.5	13
12	Effects of atomic ordering of Zirconium oxide nanomodification on stem cell differentiation. Materials Letters: X, 2021, 11, 100080.	0.3	1
13	Structural and electrochemical characterization of sulfonated styrene-divinyl benzene/Bismuth-Tin electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 126975.	2.3	1
14	Biocide effect against SARS-CoV-2 and ESKAPE pathogens of a noncytotoxic silver-copper nanofilm. Biomedical Materials (Bristol), 2021, 17, .	1.7	9
15	Dependence of the photoactivity of CdS prepared in butanol-ethylenediamine mixture in function of different sacrificial electron donors. Catalysis Today, 2020, 341, 59-70.	2.2	4
16	Evaluation of the Photocatalytic Activity of Copper Doped TiO2 nanoparticles for the Purification and/or Disinfection of Industrial Effluents. Catalysis Today, 2020, 341, 37-48.	2.2	60
17	Nanostructured biomaterials with antimicrobial activity for tissue engineering. , 2020, , 81-137.		4
18	Synthesis of a CeO ₂ /Co ₃ O ₄ catalyst with a remarkable performance for the soot oxidation reaction. Catalysis Science and Technology, 2020, 10, 853-863.	2.1	16

#	Article	IF	CITATIONS
19	Enhancing the photocatalytic activity of Cd–ZnS(EN)0.5 hybrid sheets for the H2 production. International Journal of Hydrogen Energy, 2020, 45, 30496-30510.	3.8	14
20	Improving the corrosion resistance of aluminum alloy (AA7075) using amorphous chromium oxide coatings. Materials Letters, 2020, 278, 128459.	1.3	11
21	ICMCTF 2019 – Preface. Thin Solid Films, 2020, 701, 137946.	0.8	0
22	Evaluation and correlation of electrochemical and mechanical properties of PVA/SA nanofibres. Surface and Interface Analysis, 2020, 52, 1128-1133.	0.8	7
23	Antibacterial composite membranes of polycaprolactone/gelatin loaded with zinc oxide nanoparticles for guided tissue regeneration. Biomedical Materials (Bristol), 2020, 15, 035006.	1.7	27
24	Unexpected cytotoxicity of TiO2-coated magnesium alloys. Materials Letters, 2020, 276, 128236.	1.3	4
25	Structural stabilization and ionic conductivity of bismuth niobium oxide films with fluorite-like structure. Materials Letters, 2020, 267, 127540.	1.3	1
26	Structure, mechanical properties and corrosion resistance of amorphous Ti-Cr-O coatings. Surface and Coatings Technology, 2019, 374, 690-699.	2.2	37
27	Synthesis of Bi2SiO5 thin films by confocal dual magnetron sputtering-annealing route. Thin Solid Films, 2019, 688, 137258.	0.8	8
28	Mechanical properties and microstructural stability of CuTa/Cu composite coatings. Surface and Coatings Technology, 2019, 364, 22-31.	2.2	32
29	Good practices for reporting the photocatalytic evaluation of a visible-light active semiconductor: Bi ₂ O ₃ , a case study. Catalysis Science and Technology, 2019, 9, 1476-1496.	2.1	47
30	Enhanced antibacterial nanocomposite mats by coaxial electrospinning of polycaprolactone fibers loaded with Zn-based nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1695-1706.	1.7	27
31	Photoreduction of 4-Nitrophenol in the presence of carboxylic acid using CdS nanofibers. Journal of Materials Science: Materials in Electronics, 2018, 29, 7345-7355.	1.1	13
32	Synergistic effect of supported ZnO/Bi2O3 heterojunctions for photocatalysis under visible light. Dyes and Pigments, 2018, 153, 106-116.	2.0	61
33	Development and characterization of hydrophobic anodized aluminum layer to act as a longâ€lasting protective film in corrosion. Surface and Interface Analysis, 2018, 50, 1030-1035.	0.8	4
34	Compositional and Triboâ€Mechanical Characterization of Tiâ€Ta Coatings Prepared by Confocal Dual Magnetron Coâ€Sputtering. Advanced Engineering Materials, 2018, 20, 1700687.	1.6	25
35	Stabilized Î ² -Bi2O3 nanoparticles from (BiO)4CO3(OH)2 precursor and their photocatalytic properties under blue light. Ceramics International, 2018, 44, 22329-22338.	2.3	17
36	Effect of the addition of Si into V2O5 coatings: Structure and tribo-mechanical properties. Surface and Coatings Technology, 2018, 349, 111-118.	2.2	10

#	Article	IF	CITATIONS
37	Synthesis and Optical Properties of Different Bismuth Niobate Films Grown by Dual Magnetron Coâ€6puttering. Advanced Engineering Materials, 2018, 20, 1800269.	1.6	4
38	The role of the molar ratio of (HNO3/Bi3+) on the formation and morphology of α-Bi2O3 microrods with photocatalytic properties. Materials Science in Semiconductor Processing, 2018, 86, 93-100.	1.9	4
39	Fabrication of Sputtered Ce/La, La/Ce Oxide Bilayers on AA6061 and AA7075 Aluminum Alloys for the Development of Corrosion Protective Coatings. Materials, 2018, 11, 1114.	1.3	7
40	The bismuth oxyhalide family: thin film synthesis and periodic properties. Dalton Transactions, 2018, 47, 12459-12467.	1.6	37
41	Photocharging and Band Gap Narrowing Effects on the Performance of Plasmonic Photoelectrodes in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 31374-31383.	4.0	20
42	Bismuth and Silver Nanoparticles as Antimicrobial Agent over Subgingival Bacterial and Nosocomial Strains. Journal of Materials Science and Engineering A, 2018, 8, .	0.0	3
43	Synthesis and properties of Bi5Nb3O15 thin films prepared by dual co-sputtering. Journal of Alloys and Compounds, 2017, 695, 3704-3713.	2.8	7
44	Comparison of the osteogenic, adipogenic, chondrogenic and cementogenic differentiation potential of periodontal ligament cells cultured on different biomaterials. Materials Science and Engineering C, 2017, 76, 1075-1084.	3.8	4
45	High stability and ac-conductivity of cubic fluorite-Bi 2 O 3 films synthesized by magnetron sputtering. Solid State Ionics, 2017, 309, 100-109.	1.3	9
46	Evaluation of the photodiscoloration efficiency of β-Bi2O3 films deposited on different substrates by pneumatic spray pyrolysis. Thin Solid Films, 2017, 638, 119-126.	0.8	17
47	Optical properties of nanocrystalline La2O3 dielectric films deposited by radio frequency magnetron sputtering. Thin Solid Films, 2017, 636, 615-621.	0.8	7
48	Preferential orientation in bismuth thin films as a function of growth conditions. Thin Solid Films, 2017, 636, 384-391.	0.8	21
49	Enhancing the osteoblastic differentiation through nanoscale surface modifications. Journal of Biomedical Materials Research - Part A, 2017, 105, 498-509.	2.1	13
50	Effect of the addition of Si into Nb2O5 coatings on their structural, optical, and mechanical properties. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	2
51	Photocatalytic discoloration of methyl orange dye by δ-Bi2O3 thin films. Thin Solid Films, 2016, 612, 72-81.	0.8	32
52	Photocatalytic activity of enlarged microrods of α-Bi2O3 produced using ethylenediamine-solvent. Ceramics International, 2016, 42, 11866-11875.	2.3	32
53	Efficient α/Î ² -Bi 2 O 3 composite for the sequential photodegradation of two-dyes mixture. Ceramics International, 2016, 42, 13065-13073.	2.3	95
54	Polymer-based composite with outstanding mechanically tunable refractive index. Optical Materials, 2016, 58, 18-23.	1.7	7

#	Article	IF	CITATIONS
55	The effect of simulated inflammatory conditions on the surface properties of titanium and stainless steel and their importance as biomaterials. Materials Science and Engineering C, 2016, 66, 119-129.	3.8	45
56	Effect of Si addition on the structure and corrosion behavior of NbN thin films deposited by unbalanced magnetron sputtering. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	14
57	Reduction of the coefficient of friction of niobium nitride coatings by the addition of bismuth. Vacuum, 2016, 125, 146-153.	1.6	7
58	Sputtered bismuth oxide thin films as a potential photocatalytic material. Catalysis Today, 2016, 266, 144-152.	2.2	39
59	Effect of the KOH chemical treatment on the optical and photocatalytic properties of BiVO4 thin films. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	8
60	Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	14
61	Role of integrin subunits in mesenchymal stem cell differentiation and osteoblast maturation on graphitic carbon-coated microstructured surfaces. Biomaterials, 2015, 51, 69-79.	5.7	86
62	Physicochemical Characterization of Photocatalytic Materials. , 2015, , 103-153.		3
63	Opto-electronic properties of bismuth oxide films presenting different crystallographic phases. Thin Solid Films, 2015, 578, 103-112.	0.8	39
64	Chemically induced porosity on BiVO ₄ films produced by double magnetron sputtering to enhance the photo-electrochemical response. Physical Chemistry Chemical Physics, 2015, 17, 17821-17827.	1.3	36
65	Spray deposited β-Bi2O3 nanostructured films with visible photocatalytic activity for solar water treatment. Photochemical and Photobiological Sciences, 2015, 14, 1110-1119.	1.6	45
66	Photomechanical response of composites based on PDMS and carbon soot nanoparticles under IR laser irradiation. Optical Materials Express, 2015, 5, 1792.	1.6	21
67	Bacterial adhesion on amorphous and crystalline metal oxide coatings. Materials Science and Engineering C, 2015, 57, 88-99.	3.8	27
68	TaSiN nanocomposite thin films: Correlation between structure, chemical composition, and physical properties. Thin Solid Films, 2014, 558, 104-111.	0.8	8
69	Structural, chemical, optical and mechanical properties of Au doped AlN sputtered coatings. Surface and Coatings Technology, 2014, 255, 130-139.	2.2	9
70	Optimal conditions for the deposition of novel anticorrosive coatings by RF magnetron sputtering for aluminum alloy AA6082. Journal of Alloys and Compounds, 2014, 615, S437-S443.	2.8	11
71	Stabilization of the delta-phase in Bi 2 O 3 thin films. Solid State Ionics, 2014, 255, 147-152.	1.3	39
72	Preliminary Tribological Study and Tool Life of Four Commercial Drills. Tribology Transactions, 2014, 57, 581-588.	1.1	6

#	Article	IF	CITATIONS
73	Nano sized bismuth oxy chloride by metal organic chemical vapour deposition. Applied Surface Science, 2014, 303, 250-254.	3.1	8
74	TiO ₂ Sensitization with Bi ₂ S ₃ Quantum Dots: The Inconvenience of Sodium Ions in the Deposition Procedure. Journal of Physical Chemistry C, 2014, 118, 11495-11504.	1.5	72
75	Influence of the ion energy on the structure of Bi and Fe2O3 thin films. Applied Physics A: Materials Science and Processing, 2013, 110, 949-955.	1.1	1
76	A comparative study of fibrinogen adsorption onto metal oxide thin films. Applied Surface Science, 2013, 282, 351-362.	3.1	11
77	An overview of protein adsorption on metal oxide coatings for biomedical implants. Surface and Coatings Technology, 2013, 233, 147-158.	2.2	146
78	Influence of Surface Pre-Treatment On Electrochemical Properties of CeO2 thin Films Deposited by R.F. Sputtering On AA7075 Aluminum Alloy. ECS Transactions, 2013, 47, 157-166.	0.3	3
79	Corrosion resistant coatings for dental implants. , 2013, , 250-308.		3
80	A look into the interaction of metal oxide thin films with biological media: Albumin and Fibrinogen adsorption. Materials Research Society Symposia Proceedings, 2012, 1376, 45.	0.1	1
81	A Detailed Study of the Synthesis of Bismuth Thin Films by PVD-Methods and their Structural Characterization. Materials Research Society Symposia Proceedings, 2012, 1477, 21.	0.1	4
82	Electrical and optical properties of Ta-Si-N thin films deposited by reactive magnetron sputtering. Journal of Applied Physics, 2012, 112, 114302.	1.1	3
83	Sputtered Bismuth thin films as trace metal electrochemical sensors. Materials Research Society Symposia Proceedings, 2012, 1477, 40.	0.1	2
84	Effect of 8MeV Si ions irradiation and thermal annealing in ZnO thin films. Journal of Crystal Growth, 2012, 354, 169-173.	0.7	4
85	Pulsed laser deposition and characterization of La1â [~] xSrxMnO3. Materials Science in Semiconductor Processing, 2012, 15, 492-498.	1.9	4
86	CORROSION RESISTANCE OF DECORATIVE CHROMIUM FILMS OBTAINED FROM TRIVALENT CHROMIUM SOLUTIONS. Journal of the Chilean Chemical Society, 2012, 57, 977-982.	0.5	8
87	Albumin adsorption on oxide thin films studied by spectroscopic ellipsometry. Applied Surface Science, 2011, 258, 1711-1718.	3.1	34
88	Biocompatibility of Niobium Coatings. Coatings, 2011, 1, 72-87.	1.2	88
89	Niobium based coatings for dental implants. Applied Surface Science, 2011, 257, 2555-2559.	3.1	115
90	Amorphous Carbon Gold Nanocomposite Thin Films: Structural and Spectro-ellipsometric Analysis. Thin Solid Films, 2011, 519, 5924-5932.	0.8	19

#	Article	IF	CITATIONS
91	XPS and EIS studies of sputtered Al–Ce films formed on AA6061 aluminum alloy in 3.5% NaCl solution. Journal of Applied Electrochemistry, 2010, 40, 639-651.	1.5	20
92	Oral bacterial adhesion on amorphous carbon and titanium films: Effect of surface roughness and culture media. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 92B, 196-204.	1.6	62
93	Antibacterial Effect of Biodegradable Magnesium Alloys Modified By Biocompatible Transitions Metals. Materials Research Society Symposia Proceedings, 2010, 1277, 61301.	0.1	2
94	Protein Adsorption on Amorphous Metal Oxide Thin Films: An FTIR/ATR and Ellipsometry study. Materials Research Society Symposia Proceedings, 2010, 1277, 6601.	0.1	1
95	Amorphous niobium oxide thin films. Journal of Non-Crystalline Solids, 2010, 356, 2714-2721.	1.5	81
96	Biocompatibility and Anti-microbial Properties of Silver Modified Amorphous Carbon Films. Materials Research Society Symposia Proceedings, 2009, 1244, 201.	0.1	2
97	Biocompatibility and bio-corrosion resistance of amorphous oxide thin films. Materials Research Society Symposia Proceedings, 2009, 1244, 401.	0.1	1
98	Synthesis and Characterization of Chromate Conversion Coatings on GALVALUME and Galvanized Steel Substrates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1631-1644.	1.1	6
99	Effective corrosion protection of AA6061 aluminum alloy by sputtered Al–Ce coatings. Electrochimica Acta, 2009, 55, 498-503.	2.6	27
100	Deposition of amorphous carbon–silver composites. Thin Solid Films, 2009, 518, 1493-1497.	0.8	28
101	Structural and electrochemical performance of sputtered Al–Ce films on AA6061 aluminum alloy substrates. Surface and Coatings Technology, 2009, 204, 571-579.	2.2	11
102	The preparation of permalloy 80/20 thin films using a pulsed DC discharge in a hollow cathode. Vacuum, 2009, 83, 819-823.	1.6	10
103	Corrosion behavior of amorphous carbon deposit in 0.89% NaCl by electrochemical impedance spectroscopy. Diamond and Related Materials, 2009, 18, 1360-1368.	1.8	15
104	Oral bacterial adhesion on amorphous carbon films. Diamond and Related Materials, 2009, 18, 1179-1185.	1.8	24
105	Comparison and semiconductor properties of nitrogen doped carbon thin films grown by different techniques. Applied Surface Science, 2008, 254, 5564-5568.	3.1	17
106	Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering. Thin Solid Films, 2008, 516, 8319-8326.	0.8	53
107	Superconducting niobium nitride films deposited by unbalanced magnetron sputtering. Thin Solid Films, 2008, 516, 8768-8773.	0.8	30
108	Evolution of the opto-electronic properties of amorphous carbon films as a function of nitrogen incorporation. Diamond and Related Materials, 2008, 17, 925-930.	1.8	27

#	Article	IF	CITATIONS
109	Osteoinduction properties of graphite-like amorphous carbon films evaluated in-vitro. Diamond and Related Materials, 2007, 16, 1858-1867.	1.8	40
110	The influence of the magnetic field configuration on plasma parameters and microstructure of niobium nitride films. Surface and Coatings Technology, 2007, 201, 6117-6121.	2.2	23
111	Influence of the ion–atom flux ratio on the mechanical properties of chromium nitride thin films. Vacuum, 2007, 81, 610-618.	1.6	32
112	An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films. Applied Surface Science, 2007, 254, 412-415.	3.1	100
113	Unbalanced magnetic field configuration: plasma and film properties. Journal of Physics Condensed Matter, 2006, 18, S1703-S1719.	0.7	25
114	Osteoblasts attachment on amorphous carbon films. Diamond and Related Materials, 2006, 15, 1300-1309.	1.8	14
115	Influence of the energy parameter on the microstructure of chromium nitride coatings. Surface and Coatings Technology, 2006, 200, 5743-5750.	2.2	27
116	Status of technology of carbon nitride films: challenges and opportunties. Surface Engineering, 2006, 22, 321-324.	1.1	1
117	Corrosion behaviour of TaN thin PVD films on steels. Corrosion Engineering Science and Technology, 2006, 41, 168-176.	0.7	20
118	Comparative study of chromium nitride coatings deposited by unbalanced and balanced magnetron sputtering. Thin Solid Films, 2005, 474, 119-126.	0.8	104
119	Growth and characterisation of polymeric amorphous carbon and carbon nitride films from propane. Diamond and Related Materials, 2005, 14, 928-933.	1.8	22
120	Infrared spectra of amorphous carbon based materials. Diamond and Related Materials, 2005, 14, 1262-1269.	1.8	43
121	In vitro cytotoxicity of amorphous carbon films. Bio-Medical Materials and Engineering, 2005, 15, 101-12.	0.4	7
122	Deposition of ta-C:N:H as Function of Experimental Parameters. Surface Engineering, 2004, 20, 17-24.	1.1	5
123	Bonding characteristics of DC magnetron sputtered B–C–N thin films investigated by Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy. Thin Solid Films, 2004, 467, 76-87.	0.8	89
124	In vitro studies of the biomineralization in amorphous carbon films. Surface and Coatings Technology, 2004, 177-178, 758-764.	2.2	33
125	Bonding in amorphous carbon nitride. Diamond and Related Materials, 2004, 13, 1521-1531.	1.8	130
	<pre>ctitle>Ontical properties of TiO/formula>/inf>/roman>2x/roman>/linf>/formula> thin films</pre>		

126 <title>Optical properties of TiO<formula><inf><roman>2-x</roman></inf></formula> thin films studied by spectroscopic ellipsometry: substrate temperature effect</title>., 2004, ,.

1

SANDRA E RODIL

#	Article	IF	CITATIONS
127	Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Physical Review B, 2003, 67, .	1.1	659
128	Studies of pulsed high-current arcs used to prepare carbon films. Thin Solid Films, 2003, 433, 50-56.	0.8	4
129	a-C thin film deposition by laser ablation. Thin Solid Films, 2003, 433, 27-33.	0.8	9
130	Optical gap in carbon nitride films. Thin Solid Films, 2003, 433, 119-125.	0.8	66
131	Resonant Raman spectra of amorphous carbon nitrides: the G peak dispersion. Diamond and Related Materials, 2003, 12, 905-910.	1.8	87
132	Gas evolution studies for structural characterization of hydrogenated carbon nitride samples. Diamond and Related Materials, 2003, 12, 921-926.	1.8	10
133	Paramagnetic defects in hydrogenated amorphous carbon powders. Journal of Physics Condensed Matter, 2003, 15, 7463-7468.	0.7	8
134	Properties of carbon films and their biocompatibility using in-vitro tests. Diamond and Related Materials, 2003, 12, 931-937.	1.8	90
135	Highest optical gap tetrahedral amorphous carbon. Diamond and Related Materials, 2002, 11, 1086-1090.	1.8	37
136	Is stress necessary to stabilise sp3 bonding in diamond-like carbon?. Diamond and Related Materials, 2002, 11, 994-999.	1.8	117
137	Infrared spectra of carbon nitride films. Thin Solid Films, 2002, 420-421, 122-131.	0.8	79
138	Effect of graphitic inclusions on the optical gap of tetrahedral amorphous carbon films. Journal of Applied Physics, 2001, 89, 3706-3710.	1.1	50
139	Hydrogen and disorder in diamond-like carbon. Diamond and Related Materials, 2001, 10, 965-969.	1.8	23
140	Dual ion plasma-beam sources used to maximise sp3 C–C bonds in carbon nitride. Diamond and Related Materials, 2001, 10, 1125-1131.	1.8	5
141	Chemical sputtering of ta-C: Implications for the deposition of carbon nitride. Journal of Applied Physics, 2001, 89, 5754-5759.	1.1	28
142	Raman and infrared modes of hydrogenated amorphous carbon nitride. Journal of Applied Physics, 2001, 89, 5425-5430.	1.1	190
143	Role of sp2 phase in field emission from nanostructured carbons. Journal of Applied Physics, 2001, 90, 2024-2032.	1.1	94
144	Density,sp3fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy. Physical Review B, 2000, 62, 11089-11103.	1.1	506

#	Article	IF	CITATIONS
145	Maximized sp3 bonding in carbon nitride phases. Applied Physics Letters, 2000, 77, 1458-1460.	1.5	45
146	Deposition of carbon nitride films using an electron cyclotron wave resonance plasma source. Diamond and Related Materials, 2000, 9, 524-529.	1.8	41
147	High rate deposition of ta-C:H using an electron cyclotron wave resonance plasma source. Thin Solid Films, 1999, 337, 71-73.	0.8	49
148	The Preparation, Characterization and Tribological Properties of TA-C:H Deposited Using an Electron Cyclotron Wave Resonance Plasma Beam Source. Physica Status Solidi A, 1999, 172, 79-90.	1.7	49
149	Nitrogen Incorporation into Tetrahedral Hydrogenated Amorphous Carbon. Physica Status Solidi A, 1999, 174, 25-37.	1.7	68
150	High Rate Deposition of Ta-C:H Using an Electron Cyclotron Wave Resonance Plasma Source. Materials Research Society Symposia Proceedings, 1997, 498, 147.	0.1	1
151	Production and characterisation of carbon nitride thin films produced by a graphite hollow cathode system. Thin Solid Films, 1997, 308-309, 228-232.	0.8	18
152	Biocompatibility, Cytotoxicity and Bioactivity of Amorphous Carbon Films. , 0, , 55-75.		14
153	Cathodic Arc Evaporation of Self-Lubricating TiSiVN Coatings. Journal of Materials Engineering and Performance, 0, , 1.	1.2	3
154	Can surface roughness induce osteoblasts differentiation independently of the type of material? Comparison between metals, ceramic and polymers Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	0