He-Long Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/252640/publications.pdf

Version: 2024-02-01

138	5,528 citations	57631 44 h-index	98622 67 g-index
papers	Citations	II-IIIQEA	g-muex
139 all docs	139 docs citations	139 times ranked	4707 citing authors

#	Article	IF	CITATIONS
1	Insights into extracellular polymeric substances ofÂcyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Research, 2013, 47, 2005-2014.	5.3	251
2	ZnO-Based Amperometric Enzyme Biosensors. Sensors, 2010, 10, 1216-1231.	2.1	180
3	Combination of two-dimensional correlation spectroscopy and parallel factor analysis to characterize the binding of heavy metals with DOM in lake sediments. Journal of Hazardous Materials, 2013, 263, 412-421.	6.5	155
4	Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water. Chemosphere, 2018, 211, 962-969.	4.2	155
5	Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide. Journal of Hazardous Materials, 2012, 199-200, 217-225.	6.5	150
6	Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors. Biotechnology Letters, 2003, 25, 95-99.	1.1	134
7	Bacterial Community Composition of Size-Fractioned Aggregates within the Phycosphere of Cyanobacterial Blooms in a Eutrophic Freshwater Lake. PLoS ONE, 2014, 9, e102879.	1.1	132
8	Effects of internal loading on phosphorus distribution in the Taihu Lake driven by wind waves and lake currents. Environmental Pollution, 2016, 219, 760-773.	3.7	117
9	Enhanced Phenol Biodegradation and Aerobic Granulation by Two Coaggregating Bacterial Strains. Environmental Science & Environ	4.6	113
10	Bacterial Diversity and Function of Aerobic Granules Engineered in a Sequencing Batch Reactor for Phenol Degradation. Applied and Environmental Microbiology, 2004, 70, 6767-6775.	1.4	111
11	Investigation on extracellular polymeric substances from mucilaginous cyanobacterial blooms in eutrophic freshwater lakes. Chemosphere, 2013, 93, 75-81.	4.2	106
12	Molecular weight-dependent spectral and metal binding properties of sediment dissolved organic matter from different origins. Science of the Total Environment, 2019, 665, 828-835.	3.9	102
13	Analysis of the Attached Microbial Community on Mucilaginous Cyanobacterial Aggregates in the Eutrophic Lake Taihu Reveals the Importance of Planctomycetes. Microbial Ecology, 2013, 66, 73-83.	1.4	100
14	Rapid cultivation of stable aerobic phenol-degrading granules using acetate-fed granules as microbial seed. Journal of Biotechnology, 2005, 115, 387-395.	1.9	94
15	Chemicals used for i>in situ /i>immobilization to reduce the internal phosphorus loading from lake sediments for eutrophication control. Critical Reviews in Environmental Science and Technology, 2016, 46, 947-997.	6.6	90
16	Towards understanding the role of extracellular polymeric substances in cyanobacterial Microcystis aggregation and mucilaginous bloom formation. Chemosphere, 2014, 117, 815-822.	4.2	89
17	UV-induced photochemical heterogeneity of dissolved and attached organic matter associated with cyanobacterial bloomsÂinÂa eutrophic freshwater lake. Water Research, 2013, 47, 6506-6515.	5. 3	86
18	Complex Interactions Between the Macrophyte Acorus Calamus and Microbial Fuel Cells During Pyrene and Benzo[a]Pyrene Degradation in Sediments. Scientific Reports, 2015, 5, 10709.	1.6	85

#	Article	IF	Citations
19	Toward Quantitative Understanding of the Bioavailability of Dissolved Organic Matter in Freshwater Lake during Cyanobacteria Blooming. Environmental Science & Enp.; Technology, 2017, 51, 6018-6026.	4.6	85
20	Co-occurrence patterns of the microbial community in polycyclic aromatic hydrocarbon-contaminated riverine sediments. Journal of Hazardous Materials, 2019, 367, 99-108.	6.5	85
21	Bioavailable phosphorus (P) reduction is less than mobile P immobilization in lake sediment for eutrophication control by inactivating agents. Water Research, 2017, 109, 196-206.	5.3	81
22	Multi-spectroscopic investigation on the complexation of tetracycline with dissolved organic matter derived from algae and macrophyte. Chemosphere, 2017, 187, 421-429.	4.2	79
23	Dissolved organic matter binding with Pb(II) as characterized by differential spectra and 2D UV–FTIR heterospectral correlation analysis. Water Research, 2018, 144, 435-443.	5.3	73
24	To improve the performance of sediment microbial fuel cell through amending colloidal iron oxyhydroxide into freshwater sediments. Bioresource Technology, 2014, 159, 232-239.	4.8	69
25	Increasing sulfate concentrations result in higher sulfide production and phosphorous mobilization in a shallow eutrophic freshwater lake. Water Research, 2016, 96, 94-104.	5.3	67
26	Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp Bioresource Technology, 2011, 102, 9586-9592.	4.8	66
27	Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation. RSC Advances, 2017, 7, 46690-46698.	1.7	66
28	Interconnection of Key Microbial Functional Genes for Enhanced Benzo[<i>a< i>]pyrene Biodegradation in Sediments by Microbial Electrochemistry. Environmental Science & Enp.; Technology, 2017, 51, 8519-8529.</i>	4.6	64
29	Molecular weight-dependent adsorption fractionation of natural organic matter on ferrihydrite colloids in aquatic environment. Chemical Engineering Journal, 2019, 363, 356-364.	6.6	63
30	The global <i>Microcystis</i> interactome. Limnology and Oceanography, 2020, 65, S194-S207.	1.6	63
31	Electrolyte Cations Binding with Extracellular Polymeric Substances Enhanced <i>Microcystis</i> Aggregation: Implication for <i>Microcystis</i> Bloom Formation in Eutrophic Freshwater Lakes. Environmental Science & Environmental Science & Environme	4.6	60
32	Enhanced nitrate removal from surface water in a denitrifying woodchip bioreactor with a heterotrophic nitrifying and aerobic denitrifying fungus. Bioresource Technology, 2020, 303, 122948.	4.8	60
33	Depth-dependent variations of sedimentary dissolved organic matter composition in a eutrophic lake: Implications for lake restoration. Chemosphere, 2016, 145, 551-559.	4.2	59
34	To prevent the occurrence of black water agglomerate through delaying decomposition of cyanobacterial bloom biomass by sediment microbial fuel cell. Journal of Hazardous Materials, 2015, 287, 7-15.	6.5	58
35	Characterization, origin and aggregation behavior of colloids in eutrophic shallow lake. Water Research, 2018, 142, 176-186.	5.3	58
36	Heterogeneity in metal binding by individual fluorescent components in a eutrophic algae-rich lake. Ecotoxicology and Environmental Safety, 2013, 98, 266-272.	2.9	56

#	Article	IF	CITATIONS
37	Development of a sediment microbial fuel cell-based biosensor for simultaneous online monitoring of dissolved oxygen concentrations along various depths in lake water. Science of the Total Environment, 2019, 673, 272-280.	3.9	53
38	High-Rate Biodegradation of Phenol by Aerobically Grown Microbial Granules. Journal of Environmental Engineering, ASCE, 2004, 130, 1415-1423.	0.7	51
39	Effects of sediment pretreatment on the performance of sediment microbial fuel cells. Bioresource Technology, 2011, 102, 10465-10470.	4.8	50
40	Temperature and Cyanobacterial Bloom Biomass Influence Phosphorous Cycling in Eutrophic Lake Sediments. PLoS ONE, 2014, 9, e93130.	1.1	48
41	Quadrisphaera granulorum gen. nov., sp. nov., a Gram-positive polyphosphate-accumulating coccus in tetrads or aggregates isolated from aerobic granules. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1771-1777.	0.8	47
42	Construction and operation of freshwater sediment microbial fuel cell for electricity generation. Bioprocess and Biosystems Engineering, 2011, 34, 621-627.	1.7	47
43	Effect of temperature on submerged macrophyte litter decomposition within sediments from a large shallow and subtropical freshwater lake. Hydrobiologia, 2013, 714, 131-144.	1.0	47
44	Tuning the adsorptive properties of drinking water treatment residue via oxygen-limited heat treatment for environmental recycle. Chemical Engineering Journal, 2016, 284, 571-581.	6.6	45
45	Effects of initial sediment properties on start-up times for sediment microbial fuel cells. International Journal of Hydrogen Energy, 2018, 43, 10082-10093.	3.8	45
46	Lanthanum-modified drinking water treatment residue for initial rapid and long-term equilibrium phosphorus immobilization to control eutrophication. Water Research, 2018, 137, 173-183.	5.3	44
47	Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules. FEMS Microbiology Ecology, 2006, 57, 182-191.	1.3	42
48	Effects of dissolved organic matter leaching from macrophyte litter on black water events in shallow lakes. Environmental Science and Pollution Research, 2018, 25, 9928-9939.	2.7	42
49	Effects of cyanobacterial extracellular polymeric substances on the stability of ZnO nanoparticles in eutrophic shallow lakes. Environmental Pollution, 2015, 197, 231-239.	3.7	41
50	Algal bloom sedimentation induces variable control of lake eutrophication by phosphorus inactivating agents. Science of the Total Environment, 2016, 557-558, 479-488.	3.9	39
51	Extracellular polymeric substances facilitate the biosorption of phenanthrene on cyanobacteria Microcystis aeruginosa. Chemosphere, 2016, 162, 172-180.	4.2	39
52	The composition difference of macrophyte litter-derived dissolved organic matter by photodegradation and biodegradation: Role of reactive oxygen species on refractory component. Chemosphere, 2020, 242, 125155.	4.2	37
53	Beyond enhancement of macrophyte litter decomposition in sediments from a terrestrializated shallow lake through bioanode employment. Chemical Engineering Journal, 2015, 279, 433-441.	6.6	36
54	Roles of phytoplankton- and macrophyte-derived dissolved organic matter in sulfamethazine adsorption on goethite. Environmental Pollution, 2017, 230, 87-95.	3.7	36

#	Article	IF	CITATIONS
55	Effects of natural dissolved organic matter on the complexation and biodegradation of $17\hat{l}_{\pm}$ -ethinylestradiol in freshwater lakes. Environmental Pollution, 2019, 246, 782-789.	3.7	36
56	Cellulose degradation by one mesophilic strain Caulobacter sp. FMC1 under both aerobic and anaerobic conditions. Bioresource Technology, 2013, 131, 281-287.	4.8	35
57	Accelerated removal of pyrene and benzo[a]pyrene in freshwater sediments with amendment of cyanobacteria-derived organic matter. Journal of Hazardous Materials, 2014, 272, 66-74.	6.5	35
58	Dynamic molecular size transformation of aquatic colloidal organic matter as a function of pH and cations. Water Research, 2018, 144, 543-552.	5. 3	35
59	Novel magnetic loofah sponge biochar enhancing microbial responses for the remediation of polycyclic aromatic hydrocarbons-contaminated sediment. Journal of Hazardous Materials, 2021, 401, 123859.	6.5	34
60	Various voltage productions by microbial fuel cells with sedimentary inocula taken from different sites in one freshwater lake. Bioresource Technology, 2012, 108, 68-75.	4.8	33
61	Bioaugmentation and coexistence of two functionally similar bacterial strains in aerobic granules. Applied Microbiology and Biotechnology, 2007, 75, 1191-1200.	1.7	32
62	Removal of organic matter in freshwater sediment by microbial fuel cells at various external resistances. Journal of Chemical Technology and Biotechnology, 2010, 85, 1489-1493.	1.6	32
63	Recycling of drinking water treatment residue as an additional medium in columns for effective P removal from eutrophic surface water. Journal of Environmental Management, 2018, 217, 363-372.	3.8	31
64	Tolerance and remedial function of rooted submersed macrophyte Vallisneria spiralis to phenanthrene in freshwater sediments. Ecological Engineering, 2011, 37, 123-127.	1.6	30
65	Relative contribution of iron reduction to sediments organic matter mineralization in contrasting habitats of a shallow eutrophic freshwater lake. Environmental Pollution, 2016, 213, 904-912.	3.7	30
66	Photogeneration and steady-state concentration of hydroxyl radical in river and lake waters along middle-lower Yangtze region, China. Water Research, 2020, 176, 115774.	5.3	30
67	Aggregation kinetics of inorganic colloids in eutrophic shallow lakes: Influence of cyanobacterial extracellular polymeric substances and electrolyte cations. Water Research, 2016, 106, 344-351.	5.3	29
68	Real-time monitoring of sediment bulking through a multi-anode sediment microbial fuel cell as reliable biosensor. Science of the Total Environment, 2019, 697, 134009.	3.9	29
69	Anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a eutrophic lake. Environmental Science and Pollution Research, 2019, 26, 15084-15094.	2.7	28
70	Coordinated photodegradation and biodegradation of organic matter from macrophyte litter in shallow lake water: Dual role of solar irradiation. Water Research, 2020, 172, 115516.	5.3	28
71	Improved lignin degradation through distinct microbial community in subsurface sediments of one eutrophic lake. Renewable Energy, 2019, 138, 861-869.	4.3	25
72	Characteristics and bacterial community dynamics during extracellular polymeric substance (EPS) degradation of cyanobacterial blooms. Science of the Total Environment, 2020, 748, 142309.	3.9	25

#	Article	IF	Citations
73	Priming effect of autochthonous organic matter on enhanced degradation of 17î±-ethynylestradiol in water-sediment system of one eutrophic lake. Water Research, 2020, 184, 116153.	5.3	25
74	Aging of aluminum/iron-based drinking water treatment residuals in lake water and their association with phosphorus immobilization capability. Journal of Environmental Management, 2015, 159, 178-185.	3.8	24
75	Adsorption of cyanobacterial extracellular polymeric substance on colloidal particle: Influence of molecular weight. Science of the Total Environment, 2020, 715, 136959.	3.9	24
76	Functional potential and assembly of microbes from sediments in a lake bay and adjoining river ecosystem for polycyclic aromatic hydrocarbon biodegradation. Environmental Microbiology, 2021, 23, 628-640.	1.8	24
77	Continuous Cellulosic Bioethanol Fermentation by Cyclic Fed-Batch Cocultivation. Applied and Environmental Microbiology, 2013, 79, 1580-1589.	1.4	23
78	The enhanced survival of submerged macrophyte Potamogeton malaianus by sediment microbial fuel cells. Ecological Engineering, 2016, 87, 254-262.	1.6	22
79	Response of bloom-forming cyanobacterium Microcystis aeruginosa to $17\hat{l}^2$ -estradiol at different nitrogen levels. Chemosphere, 2019, 219, 174-182.	4.2	21
80	Habitat heterogeneity induces regional differences in sediment nitrogen fixation in eutrophic freshwater lake. Science of the Total Environment, 2021, 772, 145594.	3.9	21
81	Organic matter stabilized Fe in drinking water treatment residue with implications for environmental remediation. Water Research, 2021, 189, 116688.	5. 3	20
82	Intermittent aeration incubation of drinking water treatment residuals for recycling in aquatic environment remediation. Journal of Cleaner Production, 2018, 183, 220-230.	4.6	19
83	pH-dependent phosphatization of ZnO nanoparticles and its influence on subsequent lead sorption. Environmental Pollution, 2016, 208, 723-731.	3.7	18
84	Sandarakinorhabdus cyanobacteriorum sp. nov., a novel bacterium isolated from cyanobacterial aggregates in a eutrophic lake. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 730-735.	0.8	18
85	Oxidation of ammonium in aerobic wastewater by anoxic ferric iron-dependent ammonium oxidation (Feammox) in a biofilm reactor., 0, 173, 197-206.		18
86	Functional and structural roles of wiry and sturdy rooted emerged macrophytes root functional traits in the abatement of nutrients and metals. Journal of Environmental Management, 2019, 249, 109330.	3.8	17
87	Elstera cyanobacteriorum sp. nov., a novel bacterium isolated from cyanobacterial aggregates in a eutrophic lake. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 4272-4275.	0.8	17
88	Molecular weight-dependent heterogeneities in photochemical formation of hydroxyl radical from dissolved organic matters with different sources. Science of the Total Environment, 2020, 725, 138402.	3.9	16
89	Niveispirillum cyanobacteriorum sp. nov., a nitrogen-fixing bacterium isolated from cyanobacterial aggregates in a eutrophic lake. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 2537-2541.	0.8	16
90	Dominance of Oscillospira and Bacteroides in the bacterial community associated with the degradation of high-concentration dimethyl sulfide under iron-reducing condition. Annals of Microbiology, 2016, 66, 1199-1206.	1.1	15

#	Article	IF	Citations
91	Effect of organic matter derived from algae and macrophyte on anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a shallow freshwater lake. Environmental Science and Pollution Research, 2020, 27, 25899-25907.	2.7	15
92	Development of a hybrid biofilm reactor for nitrate removal from surface water with macrophyte residues as carbon substrate. Ecological Engineering, 2019, 128, 1-8.	1.6	14
93	Supercapacitors accumulating energy harvesting from stacked sediment microbial fuel cells and boosting input power for power management systems. International Journal of Hydrogen Energy, 2022, 47, 10689-10700.	3.8	14
94	Effects of visible light radiation on macrophyte litter degradation and nutrient release in water samples from a eutrophic shallow lake. Chemistry and Ecology, 2016, 32, 961-975.	0.6	13
95	Key factors related to drinking water treatment residue selection for adsorptive properties tuning via oxygen-limited heat treatment. Chemical Engineering Journal, 2016, 306, 897-907.	6.6	13
96	Aquidulcibacter paucihalophilus gen. nov., sp. nov., a novel member of family Caulobacteraceae isolated from cyanobacterial aggregates in a eutrophic lake. Antonie Van Leeuwenhoek, 2017, 110, 1169-1177.	0.7	13
97	Desorption of nitrogen from drinking water treatment residue: Implications for environmental recycling. Journal of Cleaner Production, 2019, 226, 96-105.	4.6	13
98	Global coâ€occurrence of methanogenic archaea and methanotrophic bacteria in <i>Microcystis</i> aggregates. Environmental Microbiology, 2021, 23, 6503-6519.	1.8	13
99	Particle size-related vertical redistribution of phosphorus (P)-inactivating materials induced by resuspension shaped P immobilization in lake sediment profile. Water Research, 2022, 213, 118150.	5.3	13
100	Sediment pH structures the potential of the lake's internal P pollution involved in different types of P reactivation. Journal of Cleaner Production, 2022, 352, 131576.	4.6	13
101	Further Insights into Metal-DOM Interaction: Consideration of Both Fluorescent and Non-Fluorescent Substances. PLoS ONE, 2014, 9, e112272.	1.1	12
102	The feasibility of recycling drinking water treatment residue as suspended substrate for the removal of excess P and N from natural water. Journal of Environmental Management, 2021, 280, 111640.	3.8	11
103	A simple method to improve the adsorption properties of drinking water treatment residue by lanthanum modification. Chemosphere, 2019, 221, 750-757.	4.2	10
104	The settling of resuspended lake sediment related to physicochemical properties of particles of different sizes: Implication for environmental remediation. International Journal of Sediment Research, 2021, 36, 542-554.	1.8	10
105	Niveispirillum lacus sp. nov., isolated from cyanobacterial aggregates in a eutrophic lake. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 507-512.	0.8	10
106	Resuspension and settlement characteristics of lake sediments amended by phosphorus inactivating materials: Implications for environmental remediation. Journal of Environmental Management, 2022, 302, 113892.	3.8	10
107	Higher dissolved oxygen levels promote downward migration of phosphorus in the sediment profile: Implications for lake restoration. Chemosphere, 2022, 301, 134705.	4.2	10
108	Responses of steroid estrogen biodegradation to cyanobacterial organic matter biodegradability in the water column of a eutrophic lake. Science of the Total Environment, 2022, 805, 150058.	3.9	9

#	Article	lF	CITATIONS
109	Applicability of drinking water treatment residue for lake restoration in relation to metal/metalloid risk assessment. Scientific Reports, 2016, 6, 38638.	1.6	8
110	The addition of FeOOH binds phosphate in organic matter-rich sediments. Chemistry and Ecology, 2016, 32, 432-445.	0.6	8
111	Variation of physicochemical properties of drinking water treatment residuals and Phoslock® induced by fulvic acid adsorption: Implication for lake restoration. Environmental Science and Pollution Research, 2016, 23, 351-365.	2.7	8
112	Contrasting Effects of Sediment Microbial Fuel Cells (SMFCs) on the Degradation of Macrophyte Litter in Sediments from Different Areas of a Shallow Eutrophic Lake. Applied Sciences (Switzerland), 2019, 9, 3703.	1.3	8
113	Flavobacterium cyanobacteriorum sp. nov., isolated from cyanobacterial aggregates in a eutrophic lake. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 1279-1284.	0.8	8
114	Drinking water treatment residue recycled to synchronously control the pollution of polycyclic aromatic hydrocarbons and phosphorus in sediment from aquatic ecosystems. Journal of Hazardous Materials, 2022, 431, 128533.	6.5	8
115	Toxicity of Phenanthrene in Freshwater Sediments to the Rooted Submersed Macrophyte, Vallisneria spiralis. Bulletin of Environmental Contamination and Toxicology, 2011, 87, 129-133.	1.3	7
116	No enhancement of cyanobacterial bloom biomass decomposition by sediment microbial fuel cell (SMFC) at different temperatures. Environmental Pollution, 2016, 218, 59-65.	3.7	7
117	Hydrodynamic disturbance on phosphorus release across the sediment–water interface in Xuanwu Lake, China. Water Science and Technology: Water Supply, 2019, 19, 735-742.	1.0	7
118	Application of a microbial fuel cell-based biosensor for the energy-saving operation of macrophyte residues bioreactor with lowÂconcentration of dissolved organic carbon in effluents. Chemosphere, 2019, 220, 1075-1082.	4.2	7
119	Drinking water treatment residue structures nitrogen-cycling microbiomes with consequences for high nitrogen conversion. Journal of Cleaner Production, 2021, 320, 128840.	4.6	7
120	Inferior adaptation of bay sediments in a eutrophic shallow lake to winter season for organic matter decomposition. Environmental Pollution, 2016, 219, 794-803.	3.7	6
121	Identifying the Chemical Composition of Decomposed Residues From Cyanobacterial Bloom Biomass by Pyrolysisâ€GC/MS. Clean - Soil, Air, Water, 2016, 44, 1636-1643.	0.7	6
122	Reliance and effect of sediment bulking on the physicochemical properties of sediments in aquatic environments. Science of the Total Environment, 2020, 723, 137872.	3.9	6
123	The sequential dewatering and drying treatment enhanced the potential favorable effect of microbial communities in drinking water treatment residue for environmental recycling. Chemosphere, 2021, 262, 127930.	4.2	6
124	Properties of phenol-removal aerobic granules during normal operation and shock loading. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 253-262.	1.4	5
125	Microbial processing of autochthonous organic matter controls the biodegradation of $17\hat{l}_{\pm}$ -ethinylestradiol in lake sediments under anoxic conditions. Environmental Pollution, 2022, 296, 118760.	3.7	5
126	An assessment of the purification performance and resilience of sponge-based aerobic biofilm reactors for treating polluted urban surface waters. Environmental Science and Pollution Research, 2022, , 1.	2.7	5

#	Article	IF	Citations
127	Effects of accumulated cyanobacterial bloom biomass contents on the characteristics of surface fluid sediments in a eutrophic shallow lake. Journal of Environmental Management, 2022, 308, 114644.	3.8	5
128	The stability of drinking water treatment residue with ozone treatment. Environmental Technology (United Kingdom), 2018, 39, 1697-1704.	1.2	4
129	Comparing the effects of algae and macrophyte residues' degradation on biological nitrogen fixation in freshwater lake sediments. Science of the Total Environment, 2022, 809, 151129.	3.9	4
130	Performance Study of Polypyrrole-nanowires Based Microbial Fuel Cells. , 2019, , .		3
131	Biological Nitrogen Fixation in Sediments of a Cyanobacterial Bloomâ€Occurring Bay in One Eutrophic Shallow Lake: Occurrence and Related Environmental Factors. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006342.	1.3	3
132	Production of bio-stable fluid sediment from accumulation of cyanobacterial bloom biomass under various water depths. Science of the Total Environment, 2022, 827, 154224.	3.9	3
133	Effects of previous drying of sediment on root functional traits and rhizoperformance of emerged macrophytes. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	2
134	Characterization of Phosphorus Removal in the Rivers Inputting into Lake Taihu. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
135	Notice of Retraction: Effect of Different Carbon Resource on Enrichment of Polyphosphate Accumulating Organisms in Sediments from Lake Taihu. , 2011, , .		0
136	Draft genome sequence of Elstera cyanobacteriorum, a novel facultative aerobic bacterium isolated from cyanobacterial aggregates in a eutrophic lake. Gene Reports, 2017, 9, 136-138.	0.4	0
137	Analysis of the conductive behavior of a simplified sediment system and its computational simulation. International Journal of Sediment Research, 2020, 35, 249-255.	1.8	0
138	The contribution of sediment desiccation and rewetting process to eutrophication in the presence and absence of emergent macrophytes. Environmental Science and Pollution Research, 2021, , 1.	2.7	0