
Amparo A Alegria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2526251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Galactooligosaccharides on the Positive Effect of Plant Sterol-Enriched Beverages on Cardiovascular Risk and Sterol Colon Metabolism. Journal of Agricultural and Food Chemistry, 2022, ,	2.4	2
2	Sterol bioaccessibility in a plant sterol-enriched beverage using the INFOGEST digestion method: Influence of gastric lipase, bile salts and cholesterol esterase. Food Chemistry, 2022, 382, 132305.	4.2	20
3	Elderly gastrointestinal conditions increase sterol bioaccessibility in a plant sterol-enriched beverage: adaptation of the INFOGEST method. Food and Function, 2022, , .	2.1	7
4	Peptide-metal complexes: obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals. Critical Reviews in Food Science and Nutrition, 2021, 61, 1470-1489.	5.4	52
5	Impact of a Plant Sterol- and Galactooligosaccharide-Enriched Beverage on Colonic Metabolism and Gut Microbiota Composition Using an <i>In Vitro</i> Dynamic Model. Journal of Agricultural and Food Chemistry, 2020, 68, 1884-1895.	2.4	13
6	Anti-Inflammatory and Cytoprotective Effect of Plant Sterol and Galactooligosaccharides-Enriched Beverages in Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2020, 68, 1862-1870.	2.4	18
7	Effect of plant sterol and galactooligosaccharides enriched beverages on oxidative stress and longevity in Caenorhabditis elegans. Journal of Functional Foods, 2020, 65, 103747.	1.6	11
8	Optimization of the Red Tilapia (Oreochromis spp.) Viscera Hydrolysis for Obtaining Iron-Binding Peptides and Evaluation of In Vitro Iron Bioavailability. Foods, 2020, 9, 883.	1.9	21
9	Impact of high-pressure processing on the stability and bioaccessibility of bioactive compounds in Clementine mandarin juice and its cytoprotective effect on Caco-2 cells. Food and Function, 2020, 11, 8951-8962.	2.1	10
10	Antiproliferative Effect of Bioaccessible Fractions of Four Brassicaceae Microgreens on Human Colon Cancer Cells Linked to Their Phytochemical Composition. Antioxidants, 2020, 9, 368.	2.2	36
11	Cytotoxic Effect of Cholesterol Metabolites on Human Colonic Tumor (Caco-2) and Non-Tumor (CCD-18Co) Cells and Their Potential Implication in Colorectal Carcinogenesis. Proceedings (mdpi), 2020, 70, .	0.2	0
12	The Influence of Galactooligosaccharide Addition to a Plant Sterol-Enriched Beverage upon Plant Sterol Colonic Metabolization: A Clinical Trial. Proceedings (mdpi), 2020, 70, .	0.2	0
13	The Impact of Galactooligosaccharides on the Bioavailability of Sterols: A Randomized, Crossover, Double-Blind Clinical Trial. Proceedings (mdpi), 2020, 70, .	0.2	0
14	Evaluation of the Bioaccessibility of Antioxidant Bioactive Compounds and Minerals of Four Genotypes of Brassicaceae Microgreens. Foods, 2019, 8, 250.	1.9	78
15	Impact of processing on mineral bioaccessibility/bioavailability. , 2019, , 209-239.		5
16	Development of Functional Beverages: The Case of Plant Sterol-Enriched Milk-Based Fruit Beverages. , 2019, , 285-312.		3
17	Effect of a Milk-Based Fruit Beverage Enriched with Plant Sterols and/or Galactooligosaccharides in a Murine Chronic Colitis Model. Foods, 2019, 8, 114.	1.9	16
18	In-vitro antioxidant capacity and cytoprotective/cytotoxic effects upon Caco-2 cells of red tilapia (Oreochromis spp.) viscera hydrolysates. Food Research International, 2019, 120, 52-61.	2.9	42

#	Article	IF	CITATIONS
19	Impact of colonic fermentation on sterols after the intake of a plant sterol-enriched beverage: A randomized, double-blind crossover trial. Clinical Nutrition, 2019, 38, 1549-1560.	2.3	17
20	The impact of galactooligosaccharides on the bioaccessibility of sterols in a plant sterol-enriched beverage: adaptation of the harmonized INFOGEST digestion method. Food and Function, 2018, 9, 2080-2089.	2.1	29
21	Effects of Plant Sterols or \hat{l}^2 -Cryptoxanthin at Physiological Serum Concentrations on Suicidal Erythrocyte Death. Journal of Agricultural and Food Chemistry, 2018, 66, 1157-1166.	2.4	15
22	Effect of processing on the bioaccessibility of bioactive compounds – A review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. Journal of Food Composition and Analysis, 2018, 68, 3-15.	1.9	151
23	Evaluation of in vitro iron bioavailability in free form and as whey peptide-iron complexes. Journal of Food Composition and Analysis, 2018, 68, 95-100.	1.9	50
24	Protective effect of bioaccessible fractions of citrus fruit pulps against H 2 O 2 -induced oxidative stress in Caco-2 cells. Food Research International, 2018, 103, 335-344.	2.9	40
25	Relationship Between Dietary Sterols and Gut Microbiota: A Review. European Journal of Lipid Science and Technology, 2018, 120, 1800054.	1.0	25
26	Protective effect of antioxidants contained in milk-based fruit beverages against sterol oxidation products. Journal of Functional Foods, 2017, 30, 81-89.	1.6	18
27	Sterols in infant formulas: validation of a gas chromatographic method. International Journal of Food Sciences and Nutrition, 2017, 68, 695-703.	1.3	10
28	Dietary phytochemicals in the protection against oxysterol-induced damage. Chemistry and Physics of Lipids, 2017, 207, 192-205.	1.5	40
29	Antiproliferative effect of plant sterols at colonic concentrations on Caco-2 cells. Journal of Functional Foods, 2017, 39, 84-90.	1.6	17
30	Determination of Fecal Sterols Following a Diet with and without Plant Sterols. Lipids, 2017, 52, 871-884.	0.7	18
31	Addition of milk fat globule membrane as an ingredient of infant formulas for resembling the polar lipids of human milk. International Dairy Journal, 2016, 61, 228-238.	1.5	77
32	Evaluation of Sialic Acid in Infant Feeding: Contents and Bioavailability. Journal of Agricultural and Food Chemistry, 2016, 64, 8333-8342.	2.4	23
33	Phospholipids in Human Milk and Infant Formulas: Benefits and Needs for Correct Infant Nutrition. Critical Reviews in Food Science and Nutrition, 2016, 56, 1880-1892.	5.4	111
34	Mind the gap—deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites—a position paper focusing on carotenoids and polyphenols. Molecular Nutrition and Food Research, 2015, 59, 1307-1323.	1.5	204
35	Bioavailability of plant sterol-enriched milk-based fruit beverages: In vivo and in vitro studies. Journal of Functional Foods, 2015, 14, 44-50.	1.6	31
36	Effect of Caseinophosphopeptides from α _s - and β-Casein on Iron Bioavailability in HuH7 Cells. Journal of Agricultural and Food Chemistry, 2015, 63, 6757-6763.	2.4	10

#	Article	IF	CITATIONS
37	7keto-stigmasterol and 7keto-cholesterol induce differential proteome changes to intestinal epitelial (Caco-2) cells. Food and Chemical Toxicology, 2015, 84, 29-36.	1.8	16
38	Sterol Composition in Infant Formulas and Estimated Intake. Journal of Agricultural and Food Chemistry, 2015, 63, 7245-7251.	2.4	40
39	Static Digestion Models: General Introduction. , 2015, , 3-12.		20
40	Determining Calcium Bioavailability Using Caco-2 Cells. Food and Nutritional Components in Focus, 2015, , 179-200.	0.1	0
41	Plant sterols from foods in inflammation and risk of cardiovascular disease: A real threat?. Food and Chemical Toxicology, 2014, 69, 140-149.	1.8	50
42	Effect of β-cryptoxanthin plus phytosterols on cardiovascular risk and bone turnover markers in post-menopausal women: A randomized crossover trial. Nutrition, Metabolism and Cardiovascular Diseases, 2014, 24, 1090-1096.	1.1	47
43	Kinetics of ascorbic acid degradation in fruit-based infant foods during storage. Journal of Food Engineering, 2013, 116, 298-303.	2.7	38
44	Effect of simulated gastrointestinal digestion on plant sterols and their oxides in enriched beverages. Food Research International, 2013, 52, 1-7.	2.9	49
45	Iron and zinc bioavailability in Caco-2 cells: Influence of caseinophosphopeptides. Food Chemistry, 2013, 138, 1298-1303.	4.2	56
46	Relative expression of cholesterol transport-related proteins and inflammation markers through the induction of 7-ketosterol-mediated stress in Caco-2 cells. Food and Chemical Toxicology, 2013, 56, 247-253.	1.8	20
47	Gangliosides and sialic acid effects upon newborn pathogenic bacteria adhesion: An in vitro study. Food Chemistry, 2013, 136, 726-734.	4.2	40
48	Cytokines profiles in intestinal epithelial (Caco-2) cells exposed to 7-ketostigmasterol or 7-ketocholesterol. Proceedings of the Nutrition Society, 2013, 72, .	0.4	0
49	Bioaccessibility of Tocopherols, Carotenoids, and Ascorbic Acid from Milk- and Soy-Based Fruit Beverages: Influence of Food Matrix and Processing. Journal of Agricultural and Food Chemistry, 2012, 60, 7282-7290.	2.4	115
50	Evaluation of the cytotoxic effect of 7keto-stigmasterol and 7keto-cholesterol in human intestinal (Caco-2) cells. Food and Chemical Toxicology, 2012, 50, 3106-3113.	1.8	29
51	Sterol stability in functional fruit beverages enriched with different plant sterol sources. Food Research International, 2012, 48, 265-270.	2.9	47
52	Stability of fatty acids and tocopherols during cold storage of human milk. International Dairy Journal, 2012, 27, 22-26.	1.5	10
53	Effect of Simulated Gastrointestinal Digestion on Sialic Acid and Gangliosides Present in Human Milk and Infant Formulas. Journal of Agricultural and Food Chemistry, 2011, 59, 5755-5762.	2.4	28
54	Effect of processing and food matrix on calcium and phosphorous bioavailability from milk-based fruit beverages in Caco-2 cells. Food Research International, 2011, 44, 3030-3038.	2.9	55

#	Article	IF	CITATIONS
55	Sialic acid (N-acetyl and N-glycolylneuraminic acid) and ganglioside in whey protein concentrates and infant formulae. International Dairy Journal, 2011, 21, 887-895.	1.5	18
56	Caseinophosphopeptides exert partial and site-specific cytoprotection against H2O2-induced oxidative stress in Caco-2 cells. Food Chemistry, 2011, 129, 1495-1503.	4.2	48
57	Comparison of spectrophotometric and HPLC methods for determining sialic acid in infant formulas. Food Chemistry, 2011, 127, 1905-1910.	4.2	35
58	Mineral and/or milk supplementation of fruit beverages helps in the prevention of H2O2-induced oxidative stress in Caco-2 cells. Nutricion Hospitalaria, 2011, 26, 614-21.	0.2	8
59	Effects of phytosterol ester-enriched low-fat milk on serum lipoprotein profile in mildly hypercholesterolaemic patients are not related to dietary cholesterol or saturated fat intake. British Journal of Nutrition, 2010, 104, 1018-1025.	1.2	29
60	Determination of sialic acid and gangliosides in biological samples and dairy products: A review. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 346-357.	1.4	73
61	Addition of milk or caseinophosphopeptides to fruit beverages to improve iron bioavailability?. Food Chemistry, 2010, 119, 141-148.	4.2	20
62	Effect of caseinophosphopeptides added to fruit beverages upon ferritin synthesis in Caco-2 cells. Food Chemistry, 2010, 122, 92-97.	4.2	11
63	Milk versus caseinophosphopeptides added to fruit beverage: Resistance and release from simulated gastrointestinal digestion. Peptides, 2010, 31, 555-561.	1.2	26
64	Purified Glycosaminoglycans from Cooked Haddock May Enhance Fe Uptake Via Endocytosis in a Cacoâ€⊋ Cell Culture Model. Journal of Food Science, 2009, 74, H168-73.	1.5	15
65	Does the addition of caseinophosphopeptides or milk improve zinc in vitro bioavailability in fruit beverages?. Food Research International, 2009, 42, 1475-1482.	2.9	10
66	Antioxidant effect derived from bioaccessible fractions of fruit beverages against H2O2-induced oxidative stress in Caco-2 cells. Food Chemistry, 2008, 106, 1180-1187.	4.2	46
67	Effect of storage conditions on furosine formation in milk–cereal based baby foods. Food Chemistry, 2008, 107, 1681-1686.	4.2	22
68	Antioxidant effect of casein phosphopeptides compared with fruit beverages supplemented with skimmed milk against H2O2-induced oxidative stress in Caco-2 cells. Food Research International, 2008, 41, 773-779.	2.9	40
69	Vitamin E as an IgE inhibitor: stability during cold storage of human milk. Proceedings of the Nutrition Society, 2008, 67, .	0.4	1
70	Fluorescence and color as markers for the Maillard reaction in milk–cereal based infant foods during storage. Food Chemistry, 2007, 105, 1135-1143.	4.2	68
71	Simultaneous analysis of lysine, NÉ›-carboxymethyllysine and lysinoalanine from proteins. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 860, 69-77.	1.2	20
72	Amino acid contents of infant foods. International Journal of Food Sciences and Nutrition, 2006, 57, 212-218.	1.3	4

#	Article	IF	CITATIONS
73	Casein phosphopeptides released by simulated gastrointestinal digestion of infant formulas and their potential role in mineral binding. International Dairy Journal, 2006, 16, 992-1000.	1.5	39
74	Application of the 6-aminoquinolyl-N-hydroxysccinimidyl carbamate (AQC) reagent to the RP-HPLC determination of amino acids in infant foods. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 831, 176-183.	1.2	157
75	Identification of casein phosphopeptides after simulated gastrointestinal digestion by tandem mass spectrometry. European Food Research and Technology, 2006, 222, 48-53.	1.6	25
76	Identification of Novel Phosphopeptides After Simulated Digestion of αs2-casein by Tandem Mass Spectrometry. Food Science and Technology International, 2006, 12, 531-537.	1.1	9
77	Identification of Casein Phosphopeptides in β-casein and Commercial Hydrolysed Casein by Mass Spectrometry. Food Science and Technology International, 2006, 12, 379-384.	1.1	9
78	High-performance liquid chromatographic determination of furfural compounds in infant formulas during full shelf-life. Food Chemistry, 2005, 89, 639-645.	4.2	75
79	Liquid chromatographic determination of Vitamin D3 in infant formulas and fortified milk. Analytica Chimica Acta, 2005, 543, 58-63.	2.6	14
80	Speciation analysis of calcium, iron, and zinc in casein phosphopeptide fractions from toddler milk-based formula by anion exchange and reversed-phase high-performance liquid chromatography?mass spectrometry/flame atomic-absorption spectroscopy. Analytical and Bioanalytical Chemistry, 2005, 381, 1082-1088.	1.9	36
81	RP-HPLC Determination of Tiger Nut and Orgeat Amino Acid Contents. Food Science and Technology International, 2005, 11, 33-40.	1.1	39
82	Identification of Casein Phosphopeptides Released after Simulated Digestion of Milk-Based Infant Formulas. Journal of Agricultural and Food Chemistry, 2005, 53, 3426-3433.	2.4	54
83	Fluorescence, Browning Index, and Color in Infant Formulas during Storage. Journal of Agricultural and Food Chemistry, 2005, 53, 4911-4917.	2.4	54
84	Review: Determination of Vitamin D in Dairy Products by High Performance Liquid Chromatography. Food Science and Technology International, 2005, 11, 451-462.	1.1	53
85	Microdetermination of phosphorus from infant formulas, casein and casein phosphopeptides. European Food Research and Technology, 2004, 219, 639-642.	1.6	7
86	Stability of tocopherols in adapted milk-based infant formulas during storage. International Dairy Journal, 2004, 14, 1003-1011.	1.5	40
87	Fluorometric determination of chemically available lysine: Adaptation, validation and application to different milk products. Molecular Nutrition and Food Research, 2003, 47, 403-407.	0.0	27
88	Evolution of available lysine and furosine contents in milk-based infant formulas throughout the shelf-life storage period. Journal of the Science of Food and Agriculture, 2003, 83, 465-472.	1.7	42
89	Effect of traditional, microwave and industrial cooking on inositol phosphate content in beans, chickpeas and lentils. International Journal of Food Sciences and Nutrition, 2002, 53, 503-508.	1.3	23
90	High-performance liquid chromatographic determination of furfural compounds in infant formulas. Journal of Chromatography A, 2002, 947, 85-95.	1.8	89

#	Article	IF	CITATIONS
91	High-performance liquid chromatographic determination of tocopherols in infant formulas. Journal of Chromatography A, 2002, 947, 97-102.	1.8	34
92	Mathematic predictive models for calculating copper, iron and zinc dialysability in infant formulas. European Food Research and Technology, 2001, 212, 608-612.	1.6	3
93	Effect of proteins, phytates, ascorbic acid and citric acid on dialysability of calcium, iron, zinc and copper in soy-based infant formulas. Molecular Nutrition and Food Research, 2000, 44, 114-117.	0.0	17
94	High-performance liquid chromatographic determination of Maillard compounds in store-brand and name-brand ultra-high-temperature-treated cows' milk. Journal of Chromatography A, 2000, 881, 599-606.	1.8	60
95	Methylmercury and inorganic mercury determination in fish by cold vapour generation atomic absorption spectrometry. Food Chemistry, 2000, 71, 529-533.	4.2	47
96	Selenium, Copper, and Zinc Indices of Nutritional Status : Influence of Sex and Season on Reference Values. Biological Trace Element Research, 2000, 73, 77-83.	1.9	18
97	In Vitro Dialyzability of Zinc from Different Salts Used in the Supplementation of Infant Formulas. Biological Trace Element Research, 2000, 75, 11-19.	1.9	12
98	In vitro interactions between calcium, zinc, copper and iron in milk- and soy-based infant formulas / Interacciones in vitro entre calcio, cinc, cobre e hierro en formulas de base láctea y de soja para lactantes. Food Science and Technology International, 2000, 6, 25-31.	1.1	9
99	Amino acid profile of milk-based infant formulas. International Journal of Food Sciences and Nutrition, 2000, 51, 367-372.	1.3	15
100	Effects of Thermal Processing and Storage on Available Lysine and Furfural Compounds Contents of Infant Formulas. Journal of Agricultural and Food Chemistry, 2000, 48, 1817-1822.	2.4	70
101	Calcium dialysability as an estimation of bioavailability in human milk, cow milk and infant formulas. Food Chemistry, 1999, 64, 403-409.	4.2	26
102	Calcium bioavailability in human milk, cow milk and infant formulas—comparison between dialysis and solubility methods. Food Chemistry, 1999, 65, 353-357.	4.2	43
103	Direct determination of lead in human milk by electrothermal atomic absorption spectrometry. Food Chemistry, 1999, 64, 111-113.	4.2	20
104	Effects of different infant formula components on calcium dialysability. European Food Research and Technology, 1999, 209, 93-96.	1.6	4
105	Whole blood selenium content in pregnant women. Science of the Total Environment, 1999, 227, 139-143.	3.9	51
106	Selenium contents of human milk and infant formulas in Spain. Science of the Total Environment, 1999, 228, 185-192.	3.9	18
107	Revision: Indicadores del deterioro de la calidad proteica y del valor nutritivo de la leche / Review: Indicators of damage of protein quality and nutritional value of milk. Food Science and Technology International, 1999, 5, 447-461.	1.1	28
108	Lipid peroxidation and antioxidant enzyme activities in patients with type 1 diabetes mellitus. Scandinavian Journal of Clinical and Laboratory Investigation, 1999, 59, 99-105.	0.6	93

#	Article	IF	CITATIONS
109	Selenium, Zinc and Copper in Plasma of patients with Type 1 Diabetes Mellitus in Different Metabolic Control States. Journal of Trace Elements in Medicine and Biology, 1998, 12, 91-95.	1.5	58
110	Dialyzability of iron, zinc, and copper of different types of infant formulas marketed in Spain. Biological Trace Element Research, 1998, 65, 7-17.	1.9	35
111	Optimization of Selenium Determination in Human Milk and Whole Blood by Flow Injection Hydride Atomic Absorption Spectrometry. Journal of AOAC INTERNATIONAL, 1998, 81, 457-461.	0.7	15
112	Optimization of selenium determination in human milk and whole blood by flow injection hydride atomic absorption spectrometry. Journal of AOAC INTERNATIONAL, 1998, 81, 457-61.	0.7	4
113	Determination of mercury in dry-fish samples by microwave digestion and flow injection analysis system cold vapor atomic absorption spectrometry. Food Chemistry, 1997, 58, 169-172.	4.2	27
114	Calcium, magnesium, sodium, potassium and iron content of infant formulas and estimated daily intakes. Journal of Trace Elements in Medicine and Biology, 1996, 10, 25-30.	1.5	7
115	Effectiveness of microwave based digestion procedures for the demineralization of human milk and infant formulas prior to fluorometric determination of selenium. Molecular Nutrition and Food Research, 1996, 40, 92-95.	0.0	6
116	Isocratic high-performance liquid chromatographic determination of tryptophan in infant formulas. Journal of Chromatography A, 1996, 721, 83-88.	1.8	21
117	Selenium and glutathione peroxidase reference values in whole blood and plasma of a reference population living in Valencia, Spain. Journal of Trace Elements in Medicine and Biology, 1996, 10, 223-8.	1.5	8
118	Selenium content of infant formulas and estimation of the intake of bottle fed infants. Molecular Nutrition and Food Research, 1995, 39, 237-240.	0.0	7
119	Direct determination of calcium, magnesium, sodium, potassium and iron in infant formulas by atomic spectroscopy. Comparison with dry and wet digestions methods. Molecular Nutrition and Food Research, 1995, 39, 497-504.	0.0	8
120	GFAAS determination of selenium in infant formulas using a microwave digestion method. Molecular Nutrition and Food Research, 1994, 38, 382-385.	0.0	4
121	Relationship between cobalt, copper and zinc content of soils and vegetables. Molecular Nutrition and Food Research, 1992, 36, 451-460.	0.0	3
122	Environmental cadmium, lead and nickel contamination: possible relationship between soil and vegetable content. Fresenius' Journal of Analytical Chemistry, 1991, 339, 654-657.	1.5	47
123	Lead, cadmium and chromium content of edible vegetables grown in three different agricultural areas. Food Additives and Contaminants, 1990, 7, S22-S25.	2.0	5
124	Evaluation of Antimony, Cadmium and Lead Levels in Vegetables, Drinking and Raw Water from Different Agricultural Areas. International Journal of Environmental Analytical Chemistry, 1990, 38, 65-73.	1.8	19