Hong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/252625/publications.pdf

Version: 2024-02-01

117453 123241 4,632 127 34 61 h-index citations g-index papers 128 128 128 4486 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Population differentiation as a test for selective sweeps. Genome Research, 2010, 20, 393-402.	2.4	600
2	Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nature Communications, 2018, 9, 2337.	5.8	253
3	Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p. Cell Death and Disease, 2017, 8, e3153-e3153.	2.7	190
4	Long non-coding RNA ADNCR suppresses adipogenic differentiation by targeting miR-204. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 871-882.	0.9	148
5	circFGFR4 Promotes Differentiation of Myoblasts via Binding miR-107 to Relieve Its Inhibition of Wnt3a. Molecular Therapy - Nucleic Acids, 2018, 11, 272-283.	2.3	142
6	CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miRâ€133a. Journal of Cellular Physiology, 2018, 233, 4643-4651.	2.0	137
7	Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Proliferation, 2020, 53, e12857.	2.4	121
8	The developmental transcriptome sequencing of bovine skeletal muscle reveals a long noncoding RNA, lncMD, promotes muscle differentiation by sponging miR-125b. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2835-2845.	1.9	120
9	Origin and phylogeographical structure of Chinese cattle. Animal Genetics, 2006, 37, 579-582.	0.6	109
10	Diâ€(2â€ethylhexyl) phthalate and bisphenol A exposure impairs mouse primordial follicle assembly in vitro. Environmental and Molecular Mutagenesis, 2014, 55, 343-353.	0.9	99
11	miR-378a-3p promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development. RNA Biology, 2016, 13, 1300-1309.	1.5	79
12	A Zfp609 circular RNA regulates myoblast differentiation by sponging miR-194-5p. International Journal of Biological Macromolecules, 2019, 121, 1308-1313.	3.6	77
13	Two strongly linked single nucleotide polymorphisms (Q320P and V397I) in GDF9 gene are associated with litter size in cashmere goats. Theriogenology, 2019, 125, 115-121.	0.9	77
14	Detection of copy number variations and their effects in Chinese bulls. BMC Genomics, 2014, 15, 480.	1.2	76
15	Analysis of Long Non-Coding RNA and mRNA Expression Profiling in Immature and Mature Bovine (Bos) Tj ETQq1	1 0.7843	14 ₇₉ BT/Over
16	Circular RNA SNX29 Sponges miR-744 to Regulate Proliferation and Differentiation of Myoblasts by Activating the Wnt5a/Ca2+ Signaling Pathway. Molecular Therapy - Nucleic Acids, 2019, 16, 481-493.	2.3	74
17	Circular RNA TTN Acts As a miR-432 Sponge to Facilitate Proliferation and Differentiation of Myoblasts via the IGF2/PI3K/AKT Signaling Pathway. Molecular Therapy - Nucleic Acids, 2019, 18, 966-980.	2.3	69
18	Genetic variants and effects on milk traits of the caprine paired-like homeodomain transcription factor 2 (PITX2) gene in dairy goats. Gene, 2013, 532, 203-210.	1.0	68

#	Article	IF	CITATIONS
19	Identification and profiling of conserved and novel microRNAs from Chinese Qinchuan bovine longissimus thoracis. BMC Genomics, 2013, 14, 42.	1.2	61
20	InDels within caprine <i><scp>IGF</scp>2<scp>BP</scp>1</i> intron 2 and the 3′â€untranslated regions are associated with goat growth traits. Animal Genetics, 2020, 51, 117-121.	0.6	57
21	circRNA Profiling Reveals an Abundant circFUT10 that Promotes Adipocyte Proliferation and Inhibits Adipocyte Differentiation via Sponging let-7. Molecular Therapy - Nucleic Acids, 2020, 20, 491-501.	2.3	54
22	Genome-wide copy number variant analysis reveals variants associated with 10 diverse production traits in Holstein cattle. BMC Genomics, 2018, 19, 314.	1.2	52
23	miRâ€148aâ€3p regulates proliferation and apoptosis of bovine muscle cells by targeting KLF6. Journal of Cellular Physiology, 2019, 234, 15742-15750.	2.0	48
24	BGVD: An Integrated Database for Bovine Sequencing Variations and Selective Signatures. Genomics, Proteomics and Bioinformatics, 2020, 18, 186-193.	3.0	47
25	Genetic Variation of Mitochondrial D-loop Region and Evolution Analysis in Some Chinese Cattle Breeds. Journal of Genetics and Genomics, 2007, 34, 510-518.	1.7	46
26	Paternal origins of Chinese cattle. Animal Genetics, 2013, 44, 446-449.	0.6	46
27	Goat DNMT3B: An indel mutation detection, association analysis with litter size and mRNA expression in gonads. Theriogenology, 2020, 147, 108-115.	0.9	46
28	The Circular RNA circHUWE1 Sponges the miR-29b-AKT3 Axis to Regulate Myoblast Development. Molecular Therapy - Nucleic Acids, 2020, 19, 1086-1097.	2.3	44
29	The role of germ cell loss during primordial follicle assembly: a review of current advances. International Journal of Biological Sciences, 2017, 13, 449-457.	2.6	42
30	Diversity of copy number variation in the worldwide goat population. Heredity, 2019, 122, 636-646.	1.2	42
31	Assessing genomic diversity and signatures of selection in Jiaxian Red cattle using whole-genome sequencing data. BMC Genomics, 2021, 22, 43.	1.2	42
32	Linc-smad7 promotes myoblast differentiation and muscle regeneration via sponging miR-125b. Epigenetics, 2018, 13, 591-604.	1.3	41
33	Characterization of IncRNA–miRNA–mRNA Network to Reveal Potential Functional ceRNAs in Bovine Skeletal Muscle. Frontiers in Genetics, 2019, 10, 91.	1.1	39
34	Long Non-coding RNA Profiling Reveals an Abundant MDNCR that Promotes Differentiation of Myoblasts by Sponging miR-133a. Molecular Therapy - Nucleic Acids, 2018, 12, 610-625.	2.3	38
35	The role of autophagy during murine primordial follicle assembly. Aging, 2018, 10, 197-211.	1.4	37
36	Copy number variations of MICAL-L2 shaping gene expression contribute to different phenotypes of cattle. Mammalian Genome, 2013, 24, 508-516.	1.0	36

#	Article	IF	CITATIONS
37	Comprehensive analysis of the mitochondrial <scp>DNA</scp> diversity in Chinese cattle. Animal Genetics, 2019, 50, 70-73.	0.6	35
38	Array CGH-based detection of CNV regions and their potential association with reproduction and other economic traits in Holsteins. BMC Genomics, 2019, 20, 181.	1.2	34
39	A new insight into cattle's maternal origin in six Asian countries. Journal of Genetics and Genomics, 2010, 37, 173-180.	1.7	33
40	CircRILPL1 promotes muscle proliferation and differentiation via binding miR-145 to activate IGF1R/PI3K/AKT pathway. Cell Death and Disease, 2021, 12, 142.	2.7	33
41	Copy number variations at <i>LEPR</i> gene locus associated with gene expression and phenotypic traits in Chinese cattle. Animal Science Journal, 2016, 87, 336-343.	0.6	32
42	The developmental transcriptome landscape of bovine skeletal muscle defined by Ribo-Zero ribonucleic acid sequencing 1. Journal of Animal Science, 2015, 93, 5648-5658.	0.2	31
43	LncRNAâ€MEG3 promotes bovine myoblast differentiation by sponging miRâ€135. Journal of Cellular Physiology, 2019, 234, 18361-18370.	2.0	31
44	MiRâ€208b regulates cell cycle and promotes skeletal muscle cell proliferation by targeting CDKN1A. Journal of Cellular Physiology, 2019, 234, 3720-3729.	2.0	31
45	miRâ€483 inhibits bovine myoblast cell proliferation and differentiation via IGF1/PI3K/AKT signal pathway. Journal of Cellular Physiology, 2019, 234, 9839-9848.	2.0	30
46	Novel Nucleotide Variations, Haplotypes Structure and Associations with Growth Related Traits of Goat AT Motif-Binding Factor (<i>ATBF1</i>) Gene. Asian-Australasian Journal of Animal Sciences, 2015, 28, 1394-1406.	2.4	30
47	Role of btaâ€miRâ€204 in the regulation of adipocyte proliferation, differentiation, and apoptosis. Journal of Cellular Physiology, 2019, 234, 11037-11046.	2.0	29
48	circlNSR Promotes Proliferation and Reduces Apoptosis of Embryonic Myoblasts by Sponging miR-34a. Molecular Therapy - Nucleic Acids, 2020, 19, 986-999.	2.3	29
49	Polymorphisms of two Y chromosome microsatellites in Chinese cattle. Genetics Selection Evolution, 2006, 38, 525-34.	1.2	27
50	Association study and expression analysis of CYP4A11 gene copy number variation in Chinese cattle. Scientific Reports, 2017, 7, 46599.	1.6	27
51	Genetic diversity of Chinese cattle revealed by Yâ€ <scp>SNP</scp> and Yâ€ <scp>STR</scp> markers. Animal Genetics, 2019, 50, 64-69.	0.6	27
52	An atlas of CNV maps in cattle, goat and sheep. Science China Life Sciences, 2021, 64, 1747-1764.	2.3	27
53	Impact of ParentalBos taurusandBos indicusOrigins on Copy Number Variation in Traditional Chinese Cattle Breeds. Genome Biology and Evolution, 2015, 7, 2352-2361.	1.1	25
54	Developmental transcriptome profiling of bovine muscle tissue reveals an abundant GosB that regulates myoblast proliferation and apoptosis. Oncotarget, 2017, 8, 32083-32100.	0.8	25

#	Article	IF	CITATIONS
55	Global Transcriptome Analysis During Adipogenic Differentiation and Involvement of Transthyretin Gene in Adipogenesis in Cattle. Frontiers in Genetics, 2018, 9, 463.	1.1	25
56	circFLT1 and IncCCPG1 Sponges miR-93 to Regulate the Proliferation and Differentiation of Adipocytes by Promoting IncSLC30A9 Expression. Molecular Therapy - Nucleic Acids, 2020, 22, 484-499.	2.3	24
57	CircINSR Regulates Fetal Bovine Muscle and Fat Development. Frontiers in Cell and Developmental Biology, 2020, 8, 615638.	1.8	24
58	Abundant Genetic Diversity of Yunling Cattle Based on Mitochondrial Genome. Animals, 2019, 9, 641.	1.0	22
59	Copy number variation of bovine MAPK10 modulates the transcriptional activity and affects growth traits. Livestock Science, 2016, 194, 44-50.	0.6	21
60	<i><i><scp>PRLH</scp></i> and <i><scp>SOD</scp>1</i> gene variations associated with heat tolerance in Chinese cattle. Animal Genetics, 2018, 49, 447-451.</i>	0.6	21
61	Growth Performance and Meat Quality Evaluations in Three-Way Cross Cattle Developed for the Tibetan Plateau and their Molecular Understanding by Integrative Omics Analysis. Journal of Agricultural and Food Chemistry, 2019, 67, 541-550.	2.4	21
62	Integrating CNVs into meta-QTL identified GBP4 as positional candidate for adult cattle stature. Functional and Integrative Genomics, 2018, 18, 559-567.	1.4	19
63	MiR-204-5p promotes lipid synthesis in mammary epithelial cells by targeting SIRT1. Biochemical and Biophysical Research Communications, 2020, 533, 1490-1496.	1.0	19
64	Copy number variation (CNV) in the <i>IGF1R</i> gene across four cattle breeds and its association with economic traits. Archives Animal Breeding, 2019, 62, 171-179.	0.5	19
65	Association of HSF1 Genetic Variation with Heat Tolerance in Chinese Cattle. Animals, 2019, 9, 1027.	1.0	18
66	Genomic analyses reveal distinct genetic architectures and selective pressures in buffaloes. GigaScience, 2020, 9, .	3.3	18
67	Copy Number Variation of the PIGY Gene in Sheep and Its Association Analysis with Growth Traits. Animals, 2020, 10, 688.	1.0	18
68	Btaâ€miRâ€885 promotes proliferation and inhibits differentiation of myoblasts by targeting MyoD1. Journal of Cellular Physiology, 2020, 235, 6625-6636.	2.0	17
69	Copy Number Variation of the SHE Gene in Sheep and Its Association with Economic Traits. Animals, 2019, 9, 531.	1.0	16
70	Four Novel SNPs of MYO1A Gene Associated with Heat-Tolerance in Chinese Cattle. Animals, 2019, 9, 964.	1.0	16
71	Identification of a Novel Polymorphism in Bovine IncRNA ADNCR Gene and Its Association with Growth Traits. Animal Biotechnology, 2019, 30, 159-165.	0.7	16
72	Wholeâ€genome resequencing reveals diversity, global and local ancestry proportions in Yunling cattle. Journal of Animal Breeding and Genetics, 2020, 137, 641-650.	0.8	15

#	Article	IF	Citations
73	Whole genome analyses revealed genomic difference between European taurine and East Asian taurine. Journal of Animal Breeding and Genetics, 2021, 138, 56-68.	0.8	15
74	Circular RNA circMYL1 Inhibit Proliferation and Promote Differentiation of Myoblasts by Sponging miR-2400. Cells, 2021, 10, 176.	1.8	15
75	Novel IncRNA IncFAM200B: Molecular Characteristics and Effects of Genetic Variants on Promoter Activity and Cattle Body Measurement Traits. Frontiers in Genetics, 2019, 10, 968.	1.1	14
76	lncRNA IGF2 AS Regulates Bovine Myogenesis through Different Pathways. Molecular Therapy - Nucleic Acids, 2020, 21, 874-884.	2.3	14
77	Biogenesis and ceRNA role of circular RNAs in skeletal muscle myogenesis. International Journal of Biochemistry and Cell Biology, 2019, 117, 105621.	1.2	13
78	A Novel SNP in EIF2AK4 Gene Is Associated with Thermal Tolerance Traits in Chinese Cattle. Animals, 2019, 9, 375.	1.0	13
79	Population structure, genetic diversity, and selective signature of Chaka sheep revealed by whole genome sequencing. BMC Genomics, 2020, 21, 520.	1.2	13
80	Detection of mRNA Expression and Copy Number Variations Within the Goat FecB Gene Associated With Litter Size. Frontiers in Veterinary Science, 2021, 8, 758705.	0.9	13
81	circMEF2D Negatively Regulated by HNRNPA1 Inhibits Proliferation and Differentiation of Myoblasts via miR-486-PI3K/AKT Axis. Journal of Agricultural and Food Chemistry, 2022, 70, 8145-8163.	2.4	13
82	Cold exposure induces the acquisition of brown adipocyte gene expression profiles in cattle inguinal fat normalized with a new set of reference genes for qRT-PCR. Research in Veterinary Science, 2017, 114, 1-5.	0.9	12
83	A SNP in PLAG1 is associated with body height trait in Chinese cattle. Animal Genetics, 2020, 51, 87-90.	0.6	12
84	Multiple morphological abnormalities of the sperm flagella (MMAF)-associated genes: The relationships between genetic variation and litter size in goats. Gene, 2020, 753, 144778.	1.0	12
85	Y chromosome diversity and paternal origin of Chinese cattle. Molecular Biology Reports, 2013, 40, 6633-6636.	1.0	11
86	Genome-Wide SNPs and InDels Characteristics of Three Chinese Cattle Breeds. Animals, 2019, 9, 596.	1.0	11
87	Identification of novel alternative splicing of bovine lncRNA lncFAM200B and its effects on preadipocyte proliferation. Journal of Cellular Physiology, 2021, 236, 601-611.	2.0	11
88	MicroRNA bta-miR-365-3p inhibits proliferation but promotes differentiation of primary bovine myoblasts by targeting the activin A receptor type I. Journal of Animal Science and Biotechnology, 2021, 12, 16.	2.1	11
89	Mitochondrial genomes from modern and ancient Turano-Mongolian cattle reveal an ancient diversity of taurine maternal lineages in East Asia. Heredity, 2021, 126, 1000-1008.	1.2	11
90	CircARID1A regulates mouse skeletal muscle regeneration by functioning as a sponge of miRâ€6368. FASEB Journal, 2021, 35, e21324.	0.2	11

#	Article	IF	CITATIONS
91	A novel lncRNA BADLNCR1 inhibits bovine adipogenesis by repressing <i>GLRX5</i> expression. Journal of Cellular and Molecular Medicine, 2020, 24, 7175-7186.	1.6	11
92	Relationship of polymorphisms within ZBED6 gene and growth traits in beef cattle. Gene, 2013, 526, 107-111.	1.0	10
93	Nicotinamide and resveratrol regulate bovine adipogenesis through a SIRT1-dependent mechanism. Journal of Functional Foods, 2015, 18, 492-500.	1.6	10
94	Overâ€expression of DEC1 inhibits myogenic differentiation by modulating MyoG activity in bovine satellite cell. Journal of Cellular Physiology, 2018, 233, 9365-9374.	2.0	10
95	Multiple domestication of swamp buffalo in China and South East Asia. Journal of Animal Breeding and Genetics, 2020, 137, 331-340.	0.8	10
96	Variants and haplotypes within MEF2C gene influence stature of chinese native cattle including body dimensions and weight. Livestock Science, 2016, 185, 106-109.	0.6	9
97	Characterization and Transcriptome Analysis of Exosomal and Nonexosomal RNAs in Bovine Adipocytes. International Journal of Molecular Sciences, 2020, 21, 9313.	1.8	9
98	Integrating Genome-Wide CNVs Into QTLs and High Confidence GWAScore Regions Identified Positional Candidates for Sheep Economic Traits. Frontiers in Genetics, 2020, 11, 569.	1.1	9
99	The circular RNA circCPE regulates myoblast development by sponging miR-138. Journal of Animal Science and Biotechnology, 2021, 12, 102.	2.1	9
100	SNPs of bovine HGF gene and their association with growth traits in Nanyang cattle. Research in Veterinary Science, 2013, 95, 483-488.	0.9	8
101	Association analysis of KMT2D copy number variation as a positional candidate for growth traits. Gene, 2020, 753, 144799.	1.0	8
102	Exploring genetic diversity and phylogenic relationships of Chinese cattle using gene mtDNA 16S rRNA. Archives Animal Breeding, 2019, 62, 325-333.	0.5	8
103	CircRNA Profiling Reveals CircPPARÎ ³ Modulates Adipogenic Differentiation via Sponging miR-92a-3p. Journal of Agricultural and Food Chemistry, 2022, 70, 6698-6708.	2.4	7
104	Effects of SNPs and alternative splicing within HGF gene on its expression patterns in Qinchuan cattle. Journal of Animal Science and Biotechnology, 2015, 6, 55.	2.1	6
105	Detection of Bovine TMEM95 p.Cys161X Mutation in 13 Chinese Indigenous Cattle Breeds. Animals, 2019, 9, 444.	1.0	6
106	Circular RNA ACTA1 Acts as a Sponge for miR-199a-5p and miR-433 to Regulate Bovine Myoblast Development through the MAP3K11/MAP2K7/JNK Pathway. Journal of Agricultural and Food Chemistry, 2022, 70, 3357-3373.	2.4	6
107	Genetic Variations and mRNA Expression of Goat DNAH1 and Their Associations with Litter Size. Cells, 2022, 11, 1371.	1.8	6
108	Novel transcripts and alternatively spliced genes are associated with early development in bovine embryos. Animal, 2012, 6, 1199-1205.	1.3	5

#	Article	IF	CITATIONS
109	Association analysis of SSTR2 copy number variation with cattle stature and its expression analysis in Chinese beef cattle. Journal of Agricultural Science, 2019, 157, 365-374.	0.6	5
110	Association Analysis to Copy Number Variation (CNV) of Opn4 Gene with Growth Traits of Goats. Animals, 2020, 10, 441.	1.0	5
111	Genetic Variations within the Bovine CRY2 Gene Are Significantly Associated with Carcass Traits. Animals, 2022, 12, 1616.	1.0	5
112	Determination of genetic effects of <i>SERPINA3</i> on important growth traits in beef cattle. Animal Biotechnology, 2020, 31, 164-173.	0.7	4
113	Two Different Copy Number Variations of the CLCN2 Gene in Chinese Cattle and Their Association with Growth Traits. Animals, 2022, 12, 41.	1.0	4
114	Circ <i>RIMKLB</i> promotes myoblast proliferation and inhibits differentiation by sponging <i>miR-29c</i> to release <i>KCNJ12</i> Epigenetics, 2022, 17, 1686-1700.	1.3	3
115	Screening of Bovine Tissue-Specific Expressed Genes and Identification of Genetic Variation Within an Adipose Tissue-Specific IncRNA Gene. Frontiers in Veterinary Science, 2022, 9, .	0.9	3
116	lnc9141-a and -b Play a Different Role in Bovine Myoblast Proliferation, Apoptosis, and Differentiation. Molecular Therapy - Nucleic Acids, 2019, 18, 554-566.	2.3	2
117	Distribution of Copy Number Variation in SYT11 Gene and Its Association with Growth Conformation Traits in Chinese Cattle. Biology, 2022, 11, 223.	1.3	2
118	Evaluation of the causality of thezinc finger BED-type containing 6gene (ZBED6) for six important growth traits in Nanyang beef cattle. Animal Genetics, 2015, 46, 225-226.	0.6	1
119	<i><scp>EGLN</scp>1</i> gene variation in Chinese native cattle and yaks. Animal Genetics, 2018, 49, 655-656.	0.6	1
120	Yâ€chromosomal haplogroup distributions in Chinese cattle. Animal Genetics, 2019, 50, 412-413.	0.6	1
121	Differential Expression of ACTL8 Gene and Association Study of Its Variations with Growth Traits in Chinese Cattle. Animals, 2019, 9, 1068.	1.0	1
122	A novel 28-bp indel in <i>IGF1R</i> gene associated with growth traits across four Chinese cattle breeds. Journal of Agricultural Science, 2021, 159, 762-768.	0.6	1
123	Are Copy Number Variations within the FecB Gene Significantly Associated with Morphometric Traits in Goats?. Animals, 2022, 12, 1547.	1.0	1
124	The three missense mutations of <i>EPAS1</i> , <i>IL37</i> and <i>EEF1D</i> genes associated with highâ€altitude adaptation in Chinese cattle. Animal Genetics, 2020, 51, 987-988.	0.6	0
125	Copy number variation of bovine <i>S100A7</i> as a positional candidate affected body measurements. Animal Biotechnology, 0, , 1-9.	0.7	0
126	Comparisons of Hematological and Biochemical Profiles in Brahman and Yunling Cattle. Animals, 2022, 12, 1813.	1.0	0

#	Article	IF	CITATIONS
127	Deletions in GSN gene associated with growth traits of four Chinese cattle breeds. Molecular Genetics and Genomics, 0, , .	1.0	O