Azadeh asefnejad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2526032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 TFS
2	Adsorption and sustained release of doxorubicin from N-carboxymethyl chitosan/polyvinyl alcohol/poly(ε-caprolactone) composite and core-shell nanofibers. Journal of Drug Delivery Science and Technology, 2022, 67, 102937.	3.0	18
3	A hyaluronic acid/PVA electrospun coating on 3D printed PLA scaffold for orthopedic application. Progress in Biomaterials, 2022, 11, 67-77.	4.5	22
4	Design and manufacturing a tubular structures based on poly(É›-caprolactone) / poly(glycerol-sebacic) Tj ETQqO renal tissue engineering. Journal of Polymer Research, 2022, 29, 1.	0 0 rgBT 2.4	Overlock 107 11
5	Fabrication of multicomponent cellulose/polypyrrole composed with zinc oxide nanoparticles for improving mechanical and biological properties. Reactive and Functional Polymers, 2022, 170, 105126.	4.1	10
6	Fabrication of tragacanthin gum-carboxymethyl chitosan bio-nanocomposite wound dressing with silver-titanium nanoparticles using freeze-drying method. Materials Chemistry and Physics, 2022, 279, 125770.	4.0	55
7	Preparation and characterization of a new bio nanocomposites based poly(glycerol sebacicâ€urethane) containing nanoâ€clay (Cloisite Na ⁺) and its potential application for tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 2217-2230.	3.4	4
8	Incorporation of graphene oxide and calcium phosphate in the PCL/PHBV coreâ€shell nanofibers as bone tissue scaffold. Journal of Applied Polymer Science, 2021, 138, 49797.	2.6	23
9	Anticancer effect of green tea extract (GTE)-Loaded pH-responsive niosome Coated with PEG against different cell lines. Materials Today Communications, 2021, 26, 101751.	1.9	26
10	The physicochemical and mechanical investigation of siloxane modified Gelatin/Sodium alginate injectable hydrogels loaded by ascorbic acid and β-Glycerophosphate. Materials Today Communications, 2021, 26, 101914.	1.9	5
11	Improved surface properties in spray-coated PU/TiO2/graphene hybrid nanocomposites through nonsolvent-induced phase separation. Surface and Coatings Technology, 2021, 405, 126507.	4.8	16
12	Fabrication of Wound Dressing Cotton Nano-Composite Coated with Tragacanth/Polyvinyl Alcohol: Characterization and In Vitro Studies. ECS Journal of Solid State Science and Technology, 2021, 10, 013002.	1.8	7
13	Fabrication of carboxymethyl chitosan/poly(ε-caprolactone)/doxorubicin/nickel ferrite core-shell fibers for controlled release of doxorubicin against breast cancer. Carbohydrate Polymers, 2021, 257, 117631.	10.2	49
14	Fabrication of fibrous poly (É›â€caprolactone) nanoâ€fibers containing cerium dopedâ€bioglasses nanoparticles encapsulated collagen. Journal of Applied Polymer Science, 2021, 138, 51202.	2.6	2
15	Tissue engineering needs new biomaterials: Poly(xylitol-dodecanedioic acid)–co-polylactic acid (PXDDA-co-PLA) and its nanocomposites. European Polymer Journal, 2021, 152, 110469.	5.4	18
16	In-vitro cellular and in-vivo investigation of ascorbic acid and β-glycerophosphate loaded gelatin/sodium alginate injectable hydrogels for urinary incontinence treatment. Progress in Biomaterials, 2021, 10, 161-171.	4.5	6
17	Fabrication of shapeless scaffolds reinforced with baghdadite-magnetite nanoparticles using a 3D printer and freeze-drying technique. Journal of Materials Research and Technology, 2021, 14, 3070-3079.	5.8	52
18	A Porous Sodium Alginate-CaSiO3 Polymer Reinforced with Graphene Nanosheet: Fabrication and Optimality Analysis. Fibers and Polymers, 2021, 22, 540-549.	2.1	37

AZADEH ASEFNEJAD

#	Article	IF	CITATIONS
19	Study of the Parameters Affecting the Loading of Fluorescein on Coated Gold Nanoparticles: Promising Nanostructure for Cancer Diagnosis. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, 2429-2442.	1.7	3
20	Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. Journal of Drug Delivery Science and Technology, 2020, 55, 101379.	3.0	110
21	Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation. International Journal of Biological Macromolecules, 2020, 146, 627-637.	7.5	138
22	Preparation of superabsorbent eco-friendly semi-interpenetrating network based on cross-linked poly acrylic acid/xanthan gum/graphene oxide (PAA/XG/GO): Characterization and dye removal ability. International Journal of Biological Macromolecules, 2020, 152, 884-893.	7.5	62
23	Reinforcement of electrospun polycaprolacton scaffold using KIT-6 to improve mechanical and biological performance. Polymer Testing, 2020, 84, 106391.	4.8	8
24	Artemisia annua L. as a promising medicinal plant for powerful wound healing applications. Progress in Biomaterials, 2020, 9, 139-151.	4.5	21
25	Preparation, characterization, and antibacterial studies of N, O-carboxymethyl chitosan as a wound dressing for bedsore application. , 2020, 9, 181.		20
26	Titanium coating: introducing an antibacterial and bioactive chitosan-alginate film on titanium by spin coating. Biomedizinische Technik, 2020, 65, 621-630.	0.8	5
27	Antibacterial superhydrophobic polyvinyl chloride surfaces via the improved phase separation process using silver phosphate nanoparticles. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110438.	5.0	39
28	Programing polyurethane with systematic presence of graphene-oxide (GO) and reduced graphene-oxide (rGO) platelets for adjusting of heat-actuated shape memory properties. European Polymer Journal, 2019, 118, 619-632.	5.4	43
29	Challenge between sequence presences of conductive additives on flexibility, dielectric and supercapacitance behaviors of nanofibrillated template of bacterial cellulose aerogels. European Polymer Journal, 2019, 115, 335-345.	5.4	42
30	Electrospun electroactive nanofibers of gelatinâ€oligoaniline/Poly (vinyl alcohol) templates for architecting of cardiac tissue with onâ€demand drug release. Polymers for Advanced Technologies, 2019, 30, 1473-1483.	3.2	37
31	PREPARATION, CHARACTERIZATION AND DRUG DELIVERY BEHAVIOR OF DEXAMETHASONE-LOADED OLIBANUM MICROSPHERE. Biomedical Engineering - Applications, Basis and Communications, 2018, 30, 1850031.	0.6	0
32	Evaluation of Freeze-Dry Chitosan-Gelatin Scaffolds with Olibanum Microspheres Containing Dexamethasone for Bone Tissue Engineering. Porrime, 2018, 42, 982-993.	0.2	4
33	Bi-layered electrospun nanofibrous polyurethane-gelatin scaffold with targeted heparin release profiles for tissue engineering applications. Journal of Polymer Engineering, 2017, 37, 933-941.	1.4	26
34	The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation. International Journal of Nanomedicine, 2011, 6, 631.	6.7	74
35	The relationship between cellular adhesion and surface roughness for polyurethane modified by microwave plasma radiation. International Journal of Nanomedicine, 2011, 6, 641.	6.7	42
36	Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: morphological, physical, and mechanical characterization. International Journal of Nanomedicine, 2011, 6, 93.	6.7	51

AZADEH ASEFNEJAD

#	Article	IF	CITATIONS
37	Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay. International Journal of Nanomedicine, 2011, 6, 2375.	6.7	150
38	Fabrication of Coated-Collagen Electrospun PHBV Nanofiber Film by Plasma Method and Its Cellular Study. Journal of Nanomaterials, 2011, 2011, 1-8.	2.7	17
39	Cell engineering: nanometric grafting of poly-N-isopropylacrylamide onto polystyrene film by different doses of gamma radiation. International Journal of Nanomedicine, 2010, 5, 549.	6.7	23
40	The effect of acetaminophen nanoparticles on liver toxicity in a rat model. International Journal of Nanomedicine, 2010, 5, 197.	6.7	11
41	Effect of the mechanical activation on size reduction of crystalline acetaminophen drug particles. International Journal of Nanomedicine, 2009, 4, 283.	6.7	19
42	Water-based polyurethane/functionalized chitosan/zinc oxide nanoparticles nanocomposites: physical, mechanical and biocompatibility properties. Polymer-Plastics Technology and Materials, 0, , 1-16.	1.3	5
43	Surface modification of polyurethane nanocomposite films via nonsolventâ€induced phase separation accelerated by graphene nanoplatelets. Polymer Composites, 0, , .	4.6	0