Sambhu Radhakrishnan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2525968/publications.pdf

Version: 2024-02-01

26 papers 473 citations

759233 12 h-index 713466 21 g-index

27 all docs

27 docs citations

times ranked

27

784 citing authors

#	Article	IF	CITATIONS
1	Dispersing carbomers, mixing technology matters!. RSC Advances, 2022, 12, 7830-7834.	3.6	3
2	Selective catalytic reduction of NO _{<i>x</i>} with ammonia (NH ₃ -SCR) over copper loaded LEV type zeolites synthesized with different templates. Physical Chemistry Chemical Physics, 2022, 24, 15428-15438.	2.8	4
3	HSIL-Based Synthesis of Ultracrystalline K,Na-JBW, a Zeolite Exhibiting Exceptional Framework Ordering and Flexibility. Chemistry of Materials, 2022, 34, 7159-7166.	6.7	5
4	Nucleation of Porous Crystals from Ion-Paired Prenucleation Clusters. Chemistry of Materials, 2022, 34, 7139-7149.	6.7	11
5	Super-ions of sodium cations with hydrated hydroxide anions: inorganic structure-directing agents in zeolite synthesis. Materials Horizons, 2021, 8, 2576-2583.	12.2	16
6	Hierarchical ISI-1 zeolite catalyst for hydroconversion of long-chain paraffins. Catalysis Science and Technology, 2021, 11, 1519-1525.	4.1	4
7	Spherical core–shell alumina support particles for model platinum catalysts. Nanoscale, 2021, 13, 4221-4232.	5.6	5
8	NMR Crystallography Reveals Carbonate Induced Alâ€Ordering in ZnAl Layered Double Hydroxide. Chemistry - A European Journal, 2021, 27, 15944-15953.	3.3	9
9	IZM-7: A new stable aluminosilicogermanate with a promising catalytic activity. Journal of Catalysis, 2021, , .	6.2	1
10	Trace Level Detection and Quantification of Crystalline Silica in an Amorphous Silica Matrix with Natural Abundance ²⁹ Si NMR. Analytical Chemistry, 2020, 92, 13004-13009.	6.5	8
11	Water as a tuneable solvent: a perspective. Chemical Society Reviews, 2020, 49, 2557-2569.	38.1	51
12	Creation of gallium acid and platinum metal sites in bifunctional zeolite hydroisomerization and hydrocracking catalysts by atomic layer deposition. Catalysis Science and Technology, 2020, 10, 1778-1788.	4.1	13
13	Framework flexibility-driven CO ₂ adsorption on a zeolite. Materials Horizons, 2020, 7, 1528-1532.	12.2	39
14	Alumina: discriminative analysis using 3D correlation of solid-state NMR parameters. Chemical Society Reviews, 2019, 48, 134-156.	38.1	85
15	"Click―Silicaâ€Supported Sulfonic Acid Catalysts with Variable Acid Strength and Surface Polarity. Chemistry - A European Journal, 2019, 25, 6753-6762.	3.3	16
16	Evolution of the crystal growth mechanism of zeolite W (MER) with temperature. Microporous and Mesoporous Materials, 2019, 274, 379-384.	4.4	23
17	Reversible room temperature ammonia gas absorption in pore water of microporous silica–alumina for sensing applications. Physical Chemistry Chemical Physics, 2018, 20, 13528-13536.	2.8	13
18	EU-7 zeolite: a synthetic BIK type zeolite with high hydrothermal stability. Chemical Communications, 2018, 54, 5626-5629.	4.1	6

#	Article	lF	CITATIONS
19	Solvent Polarity-Induced Pore Selectivity in H-ZSM-5 Catalysis. ACS Catalysis, 2017, 7, 4248-4252.	11.2	24
20	Impact of Amino Acids on the Isomerization of the Aluminum Tridecamer Al $<$ sub $>$ 13 $<$ /sub $>$. Inorganic Chemistry, 2017, 56, 12401-12409.	4.0	10
21	<i>In Situ</i> Solid-State ¹³ C NMR Observation of Pore Mouth Catalysis in Etherification of \hat{l}^2 -Citronellene with Ethanol on Zeolite Beta. Journal of the American Chemical Society, 2016, 138, 2802-2808.	13.7	31
22	Selective etherification of \hat{I}^2 -citronellene catalyzed by zeolite beta. Green Chemistry, 2015, 17, 2840-2845.	9.0	3
23	Selective Hydroalkoxylation of 1â∈Hexene with 1â∈Propanol and 1â∈Butanol over Zeolite Beta Catalyst. ChemCatChem, 2013, 5, 576-581.	3.7	9
24	Selective synthesis of 2-ethoxy alkanes through ethoxylation of 1-alkenes with bioethanol over zeolite beta catalyst in a liquid phase continuous process. Green Chemistry, 2012, 14, 1475.	9.0	9
25	Factors Influencing the Kinetics of Esterification of Fatty Acids over Solid Acid Catalysts. Energy &	5.1	27
26	Guest-Specific Double- or Single-Step Adsorption in a Flexible Porous Framework Based on a Mixed-Ligand System. Inorganic Chemistry, 2011, 50, 400-402.	4.0	48