
Maria P. Ferraz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2525885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The influence of social and economic environment on health. , 2022, , 205-229.		4
2	Biomaterials for Ophthalmic Applications. Applied Sciences (Switzerland), 2022, 12, 5886.	1.3	6
3	Indoor Air Quality in Elderly Centers: Pollutants Emission and Health Effects. Environments - MDPI, 2022, 9, 86.	1.5	18
4	Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102145.	1.7	44
5	Detection of Staphylococcus aureus (MRSA/MSSA) in surfaces of dental medicine equipment. Saudi Journal of Biological Sciences, 2020, 27, 1003-1008.	1.8	6
6	Health Monitoring and Intervention Plan on Oil Industry Workers: Results from a Case-Study. Studies in Systems, Decision and Control, 2020, , 265-274.	0.8	1
7	Urban Lifestyles and Consumption Patterns. Encyclopedia of the UN Sustainable Development Goals, 2020, , 851-860.	0.0	16
8	Alginate-nanohydroxyapatite hydrogel system: Optimizing the formulation for enhanced bone regeneration. Materials Science and Engineering C, 2019, 105, 109985.	3.8	53
9	Inhibitory Effect of 5-Aminoimidazole-4-Carbohydrazonamides Derivatives Against Candida spp. Biofilm on Nanohydroxyapatite Substrate. Mycopathologia, 2019, 184, 775-786.	1.3	7
10	Lytic bacteriophages against multidrug-resistant Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolates from orthopaedic implant-associated infections. International Journal of Antimicrobial Agents, 2019, 54, 329-337.	1.1	44
11	Measuring Health Vulnerability: An Interdisciplinary Indicator Applied to Mainland Portugal. International Journal of Environmental Research and Public Health, 2019, 16, 4121.	1.2	12
12	Prevalence of antibiotic (β-lactams, tetracycline, metronidazole, erythromycin) resistance genes in periodontic infections. Clinical Research and Trials, 2019, 5, .	0.1	5
13	Silk fibroin/nanohydroxyapatite hydrogels for promoted bioactivity and osteoblastic proliferation and differentiation of human bone marrow stromal cells. Materials Science and Engineering C, 2018, 89, 336-345.	3.8	24
14	<i>Staphylococcus aureus</i> and <i>Escherichia coli</i> dualâ€species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles. Journal of Biomedical Materials Research - Part A, 2017, 105, 491-497.	2.1	19
15	Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 231-239.	1.7	119
16	Phase Behaviour and Miscibility Studies of Collagen/Silk Fibroin Macromolecular System in Dilute Solutions and Solid State. Molecules, 2017, 22, 1368.	1.7	21
17	Microanalysis of Bioactive Samarium Doped Glass-Reinforced Hydroxyapatite. Microscopy and Microanalysis, 2015, 21, 31-32.	0.2	3
18	Novel cerium doped glass-reinforced hydroxyapatite with antibacterial and osteoconductive properties for bone tissue regeneration. Biomedical Materials (Bristol), 2015, 10, 055008.	1.7	45

MARIA P. FERRAZ

#	Article	IF	CITATIONS
19	Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles—an <i>in vitro</i> and <i>in vivo</i> study. Nanotechnology, 2015, 26, 315101.	1.3	55
20	Anti-sessile bacterial and cytocompatibility properties of CHX-loaded nanohydroxyapatite. Colloids and Surfaces B: Biointerfaces, 2015, 130, 305-314.	2.5	17
21	<i>In vitro</i> antimicrobial activity and biocompatibility of propolis containing nanohydroxyapatite. Biomedical Materials (Bristol), 2015, 10, 025004.	1.7	31
22	Development of silk fibroin/nanohydroxyapatite composite hydrogels for bone tissue engineering. European Polymer Journal, 2015, 67, 66-77.	2.6	82
23	The role of dialysis and freezing on structural conformation, thermal properties and morphology of silk fibroin hydrogels. Biomatter, 2014, 4, e28536.	2.6	28
24	Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications. Science and Technology of Advanced Materials, 2014, 15, 025001.	2.8	28
25	In vitro analysis of the antibacterial effect of nanohydroxyapatite–ZnO composites. Journal of Biomedical Materials Research - Part A, 2014, 102, 3726-3733.	2.1	28
26	Samarium doped glass-reinforced hydroxyapatite with enhanced osteoblastic performance and antibacterial properties for bone tissue regeneration. Journal of Materials Chemistry B, 2014, 2, 5872-5881.	2.9	40
27	Influence of nanohydroxyapatite surface properties on Staphylococcus epidermidis biofilm formation. Journal of Biomaterials Applications, 2014, 28, 1325-1335.	1.2	18
28	Biological evaluation of alginate-based hydrogels, with antimicrobial features by Ce(III) incorporation, as vehicles for a bone substitute. Journal of Materials Science: Materials in Medicine, 2013, 24, 2145-2155.	1.7	40
29	A modular reactor to simulate biofilm development in orthopedic materials. International Microbiology, 2013, 16, 191-8.	1.1	6
30	Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter, 2012, 2, 176-194.	2.6	598
31	<i>Staphylococcus aureus</i> and <i>Staphylococcus epidermidis</i> adhesion to nanohydroxyapatite in the presence of model proteins. Biomedical Materials (Bristol), 2012, 7, 045010.	1.7	10
32	Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration. Dental Materials, 2012, 28, 1250-1260.	1.6	24
33	Adhesion of <i>Staphylococcus aureus</i> , <i>Staphylococcus epidermidis</i> , and <i>Pseudomonas aeruginosa</i> onto nanohydroxyapatite as a bone regeneration material. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1823-1830.	2.1	16
34	<i>Equisetum arvense</i> hydromethanolic extracts in bone tissue regeneration: <i>in vitro</i> osteoblastic modulation and antibacterial activity. Cell Proliferation, 2012, 45, 386-396.	2.4	32
35	Supplementation of collagen scaffolds with SPARC to facilitate mineralization. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 862-870.	1.6	13
36	Degradation Studies and Biological Behavior on an Artificial Cornea Material. , 2011, 52, 4274.		17

Maria P. Ferraz

#	Article	IF	CITATIONS
37	<i>In vivo</i> evaluation of highly macroporous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 93A, 567-575.	2.1	38
38	Heparinized hydroxyapatite/collagen three-dimensional scaffolds for tissue engineering. Journal of Materials Science: Materials in Medicine, 2010, 21, 2385-2392.	1.7	34
39	Proliferation and mineralization of bone marrow cells cultured on macroporous hydroxyapatite scaffolds functionalized with collagen type I for bone tissue regeneration. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1-8.	2.1	32
40	Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Materials Science and Engineering C, 2009, 29, 1510-1514.	3.8	109
41	Cationic liposome–DNA complexes as gene delivery vectors: Development and behaviour towards bone-like cells. Acta Biomaterialia, 2009, 5, 2142-2151.	4.1	54
42	Biocompatibility of highly macroporous ceramic scaffolds: cell adhesion and morphology studies. Journal of Materials Science: Materials in Medicine, 2008, 19, 855-859.	1.7	50
43	PLD bioactive ceramic films: the influence of CaO–P2O5 glass additions to hydroxyapatite on the proliferation and morphology of osteblastic like-cells. Journal of Materials Science: Materials in Medicine, 2008, 19, 1775-1785.	1.7	15
44	Comparative study of nanohydroxyapatite microspheres for medical applications. Journal of Biomedical Materials Research - Part A, 2008, 86A, 483-493.	2.1	67
45	Laser surface treatment of hydroxyapatite for enhanced tissue integration: Surface characterization and osteoblastic interaction studies. Journal of Biomedical Materials Research - Part A, 2007, 81A, 920-929.	2.1	15
46	Effect of chemical composition on hydrophobicity and zeta potential of plasma sprayed HA/CaO–P2O5 glass coatings. Biomaterials, 2001, 22, 3105-3112.	5.7	41
47	HA and double-layer HA-P2O5/CaO glass coatings: influence of chemical composition on human bone marrow cells osteoblastic behavior. Journal of Materials Science: Materials in Medicine, 2001, 12, 629-638.	1.7	25
48	Flow cytometry analysis of the effects of pre-immersion on the biocompatibility of glass-reinforced hydroxyapatite plasma-sprayed coatings. Biomaterials, 2000, 21, 813-820.	5.7	29
49	In vitro growth and differentiation of osteoblast-like human bone marrow cells on glass reinforced hydroxyapatite plasma-sprayed coatings. Journal of Materials Science: Materials in Medicine, 1999, 10, 567-576.	1.7	21
50	CaO-P2O5 glass hydroxyapatite double-layer plasma-sprayed coating:In vitro bioactivity evaluation. , 1999, 45, 376-383.		48
51	Flow cytometry analysis of effects of glass on response of osteosarcoma cells to plasma-sprayed hydroxyapatite/CaO-P2O5 coatings. Journal of Biomedical Materials Research Part B, 1999, 47, 603-611.	3.0	25
52	Identification of Nasal Carriage of Staphylococcus aureus among Nursing Students during Curricular Clinical Internships: An Observational Study. Integrative Journal of Medical Sciences, 0, 8, .	0.0	2