Ye Zhou

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2525357/ye-zhou-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

175 6,219 42 72 g-index

186 7,786 10.6 6.38 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
175	A van der Waals Integrated Damage-Free Memristor Based on Layered 2D Hexagonal Boron Nitride <i>Small</i> , 2022 , e2106253	11	2
174	Effect of Interface Modification Conditions on Electrical Characteristics and Device Consistency of Organic Thin Film Transistors. <i>IEEE Electron Device Letters</i> , 2022 , 43, 36-39	4.4	
173	Evolutionary 2D organic crystals for optoelectronic transistors and neuromorphic computing. <i>Neuromorphic Computing and Engineering</i> , 2022 , 2, 012001		3
172	Filament Engineering of Two-Dimensional h-BN for a Self-Power Mechano-Nociceptor System <i>Small</i> , 2022 , e2200185	11	4
171	Reliability Issues of Thin Film Transistors Subject to Electrostatic Discharge Stresses: An Overview. <i>Advanced Electronic Materials</i> , 2022 , 8, 2100886	6.4	1
170	Lewis adduct approach for self-assembled block copolymer perovskite quantum dots composite toward optoelectronic application: Challenges and prospects. <i>Chemical Engineering Journal</i> , 2021 , 431, 133701	14.7	5
169	Memristor modeling: challenges in theories, simulations, and device variability. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 16859-16884	7.1	17
168	High-performance perovskite memristor by integrating a tip-shape contact. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 15435-15444	7.1	2
167	Memristor-based biomimetic compound eye for real-time collision detection. <i>Nature Communications</i> , 2021 , 12, 5979	17.4	17
166	Functional Applications of Future Data Storage Devices. Advanced Electronic Materials, 2021, 7, 200118	16.4	8
165	Electronic synapses mimicked in bilayer organic-inorganic heterojunction based memristor. <i>Organic Electronics</i> , 2021 , 90, 106062	3.5	6
164	Polymer Nanocomposites for Resistive Switching Memory 2021 , 211-246		4
163	MXenes for memristive and tactile sensory systems. <i>Applied Physics Reviews</i> , 2021 , 8, 011316	17.3	8
162	Biodegradable Polymer Nanocomposites for Electronics 2021 , 53-75		0
161	Photoferroelectric perovskite solar cells: Principles, advances and insights. <i>Nano Today</i> , 2021 , 37, 1010	62 7.9	16
160	Emerging MXenes for Functional Memories. Small Science, 2021, 1, 2100006		19
159	Material Foundation for Future 5G Technology. <i>Accounts of Materials Research</i> , 2021 , 2, 306-310	7.5	1

(2021-2021)

158	Self-assembling crystalline peptide microrod for neuromorphic function implementation. <i>Matter</i> , 2021 , 4, 1702-1719	12.7	11	
157	Inorganic Perovskite Quantum Dot-Based Strain Sensors for Data Storage and In-Sensor Computing. ACS Applied Materials & Interfaces, 2021, 13, 30861-30873	9.5	5	
156	Novel stretchable light-emitting diodes based on conjugated-rod block elastic-coil copolymers. <i>Polymer International</i> , 2021 , 70, 426-431	3.3	7	
155	Ambipolar polymers for transistor applications. <i>Polymer International</i> , 2021 , 70, 358-366	3.3	4	
154	Building Functional Memories and Logic Circuits with 2D Boron Nitride. <i>Advanced Functional Materials</i> , 2021 , 31, 2004733	15.6	12	
153	Optoelectronic synaptic transistors based on upconverting nanoparticles. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 640-648	7.1	7	
152	Recent Progress of Protein-Based Data Storage and Neuromorphic Devices. <i>Advanced Intelligent Systems</i> , 2021 , 3, 2000180	6	5	
151	The Role of Metal@rganic Frameworks in Electronic Sensors. <i>Angewandte Chemie</i> , 2021 , 133, 15320-15	3406	4	
150	The Role of Metal-Organic Frameworks in Electronic Sensors. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 15192-15212	16.4	21	
149	Recent Progress of Protein-Based Data Storage and Neuromorphic Devices. <i>Advanced Intelligent Systems</i> , 2021 , 3, 2170011	6		
148	Phototunable memories and reconfigurable logic applications based on natural melanin. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 3569-3577	7.1	5	
147	Fermi-level depinning of 2D transition metal dichalcogenide transistors. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 11407-11427	7.1	11	
146	Introduction to tactile sensors 2021 , 1-12		1	
145	2D oriented covalent organic frameworks for alcohol-sensory synapses. <i>Materials Horizons</i> , 2021 , 8, 20-	41 <u>-20</u> 4	97	
144	Recent advances in metal nanoparticle-based floating gate memory. <i>Nano Select</i> , 2021 , 2, 1245-1265	3.1	14	
143	Enhanced electrical and thermal properties of semi-conductive PANI-CNCs with surface modified CNCs <i>RSC Advances</i> , 2021 , 11, 11444-11456	3.7	2	
142	Energy-efficient transistors: suppressing the subthreshold swing below the physical limit. <i>Materials Horizons</i> , 2021 , 8, 1601-1617	14.4	8	
141	Synaptic transistors and neuromorphic systems based on carbon nano-materials. <i>Nanoscale</i> , 2021 , 13, 7498-7522	7.7	12	

YE ZHOU

(2020-2020)

122	Type-I Core-Shell ZnSe/ZnS Quantum Dot-Based Resistive Switching for Implementing Algorithm. <i>Nano Letters</i> , 2020 , 20, 5562-5569	11.5	11
121	Device challenges, possible strategies, and conclusions 2020 , 317-324		1
120	Tailoring synaptic plasticity in a perovskite QD-based asymmetric memristor. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 2985-2992	7.1	25
119	Lead-free monocrystalline perovskite resistive switching device for temporal information processing. <i>Nano Energy</i> , 2020 , 71, 104616	17.1	43
118	Building memory devices from biocomposite electronic materials. <i>Science and Technology of Advanced Materials</i> , 2020 , 21, 100-121	7.1	20
117	Optically Modulated Threshold Switching in CoreBhell Quantum Dot Based Memristive Device. <i>Advanced Functional Materials</i> , 2020 , 30, 1909114	15.6	25
116	Ferroelectric polymers for non-volatile memory devices: a review. <i>Polymer International</i> , 2020 , 69, 533-	544	30
115	Room-temperature magnetoelastic coupling. <i>Science</i> , 2020 , 367, 627-628	33.3	5
114	Recent advances in synthesis and application of perovskite quantum dot based composites for photonics, electronics and sensors. <i>Science and Technology of Advanced Materials</i> , 2020 , 21, 278-302	7.1	21
113	Making allowances for COVID-19. <i>Science</i> , 2020 , 368, 98	33.3	
113	Making allowances for COVID-19. <i>Science</i> , 2020 , 368, 98 Near-Infrared-Irradiation-Mediated Synaptic Behavior from Tunable Charge-Trapping Dynamics. <i>Advanced Electronic Materials</i> , 2020 , 6, 1900765	33.3	25
	Near-Infrared-Irradiation-Mediated Synaptic Behavior from Tunable Charge-Trapping Dynamics.		
112	Near-Infrared-Irradiation-Mediated Synaptic Behavior from Tunable Charge-Trapping Dynamics. Advanced Electronic Materials, 2020, 6, 1900765 Near infrared neuromorphic computing via upconversion-mediated optogenetics. Nano Energy,	6.4	
112	Near-Infrared-Irradiation-Mediated Synaptic Behavior from Tunable Charge-Trapping Dynamics. Advanced Electronic Materials, 2020, 6, 1900765 Near infrared neuromorphic computing via upconversion-mediated optogenetics. Nano Energy, 2020, 67, 104262	6.4	21
112 111 110	Near-Infrared-Irradiation-Mediated Synaptic Behavior from Tunable Charge-Trapping Dynamics. Advanced Electronic Materials, 2020, 6, 1900765 Near infrared neuromorphic computing via upconversion-mediated optogenetics. Nano Energy, 2020, 67, 104262 A UV damage-sensing nociceptive device for bionic applications. Nanoscale, 2020, 12, 1484-1494 Fluorenone/carbazole based bipolar small molecules for non-volatile memory devices. Organic	6.4 17.1 7.7	21
112 111 110	Near-Infrared-Irradiation-Mediated Synaptic Behavior from Tunable Charge-Trapping Dynamics. Advanced Electronic Materials, 2020, 6, 1900765 Near infrared neuromorphic computing via upconversion-mediated optogenetics. Nano Energy, 2020, 67, 104262 A UV damage-sensing nociceptive device for bionic applications. Nanoscale, 2020, 12, 1484-1494 Fluorenone/carbazole based bipolar small molecules for non-volatile memory devices. Organic Electronics, 2020, 78, 105584 Synaptic Plasticity and Filtering Emulated in Metal®rganic Frameworks Nanosheets Based	6.4 17.1 7.7 3.5 6.4	21 11 8
1112 1111 110 109 108	Near-Infrared-Irradiation-Mediated Synaptic Behavior from Tunable Charge-Trapping Dynamics. Advanced Electronic Materials, 2020, 6, 1900765 Near infrared neuromorphic computing via upconversion-mediated optogenetics. Nano Energy, 2020, 67, 104262 A UV damage-sensing nociceptive device for bionic applications. Nanoscale, 2020, 12, 1484-1494 Fluorenone/carbazole based bipolar small molecules for non-volatile memory devices. Organic Electronics, 2020, 78, 105584 Synaptic Plasticity and Filtering Emulated in Metal®rganic Frameworks Nanosheets Based Transistors. Advanced Electronic Materials, 2020, 6, 1900978 High-Performance Polycrystalline Silicon Thin-Film Transistors without Source/Drain Doping by	6.4 17.1 7.7 3.5 6.4	21 11 8

104	A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays. <i>Nano Energy</i> , 2020 , 78, 105246	17.1	34
103	The strategies of filament control for improving the resistive switching performance. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 16295-16317	7.1	18
102	Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials. <i>Nanoscale</i> , 2020 , 12, 23391-23423	7.7	13
101	Template-Directed Growth of Hierarchical MOF Hybrid Arrays for Tactile Sensor. <i>Advanced Functional Materials</i> , 2020 , 30, 2001296	15.6	36
100	Recent Advances in Flexible Field-Effect Transistors toward Wearable Sensors. <i>Advanced Intelligent Systems</i> , 2020 , 2, 2000113	6	21
99	Electromechanical coupling effects for data storage and synaptic devices. <i>Nano Energy</i> , 2020 , 77, 10515	6 7.1	8
98	Leaky integrate-and-fire neurons based on perovskite memristor for spiking neural networks. <i>Nano Energy</i> , 2020 , 74, 104828	17.1	43
97	Photonic Memristor for Future Computing: A Perspective. <i>Advanced Optical Materials</i> , 2019 , 7, 1900766	8.1	65
96	Artificial synapses emulated through a light mediated organicIhorganic hybrid transistor. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 48-59	7.1	44
95	A bio-inspired electronic synapse using solution processable organic small molecule. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 1491-1501	7.1	42
94	Keggin-type polyoxometalate cluster as an active component for redox-based nonvolatile memory. <i>Nanoscale Horizons</i> , 2019 , 4, 697-704	10.8	24
93	A solution processed metalōxo cluster for rewritable resistive memory devices. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 843-852	7.1	15
92	Configurable multi-state non-volatile memory behaviors in TiC nanosheets. <i>Nanoscale</i> , 2019 , 11, 7102-7	1/19	45
91	Tunable synaptic behavior realized in C3N composite based memristor. <i>Nano Energy</i> , 2019 , 58, 293-303	17.1	71
90	Mimicking Neuroplasticity in a Hybrid Biopolymer Transistor by Dual Modes Modulation. <i>Advanced Functional Materials</i> , 2019 , 29, 1902374	15.6	95
89	Flexible Pyrene/Phenanthro[9,10-d]imidazole-Based Memristive Devices for Mimicking Synaptic Plasticity. <i>Advanced Intelligent Systems</i> , 2019 , 1, 1900008	6	22
88	Fingertip-Skin-Inspired Highly Sensitive and Multifunctional Sensor with Hierarchically Structured Conductive Graphite/Polydimethylsiloxane Foams. <i>Advanced Functional Materials</i> , 2019 , 29, 1808829	15.6	98
87	Light Driven Active Transition of Switching Modes in Homogeneous Oxides/Graphene Heterostructure. <i>Advanced Science</i> , 2019 , 6, 1900213	13.6	3

(2018-2019)

86	Functional Non-Volatile Memory Devices: From Fundamentals to Photo-Tunable Properties. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1800644	2.5	20
85	Fully photon modulated heterostructure for neuromorphic computing. <i>Nano Energy</i> , 2019 , 65, 104000	17.1	45
84	TiO2 based sensor with butterfly wing configurations for fast acetone detection at room temperature. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 11118-11125	7.1	23
83	Graphitic carbon nitride nanosheets for solution processed non-volatile memory devices. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 10203-10210	7.1	20
82	Recent Advances in Ambipolar Transistors for Functional Applications. <i>Advanced Functional Materials</i> , 2019 , 29, 1902105	15.6	86
81	Bioinspired Artificial Sensory Nerve Based on Nafion Memristor. <i>Advanced Functional Materials</i> , 2019 , 29, 1808783	15.6	140
80	Organic Memristor Utilizing Copper Phthalocyanine Nanowires with Infrared Response and Cation Regulating Properties. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800793	6.4	28
79	2D Metal D rganic Framework Nanosheets with Time-Dependent and Multilevel Memristive Switching. <i>Advanced Functional Materials</i> , 2019 , 29, 1806637	15.6	67
78	Near-Infrared Annihilation of Conductive Filaments in Quasiplane MoSe /Bi Se Nanosheets for Mimicking Heterosynaptic Plasticity. <i>Small</i> , 2019 , 15, e1805431	11	55
77	Controlled Nonvolatile Transition in Polyoxometalates-Graphene Oxide Hybrid Memristive Devices. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800551	6.8	13
76	Artificial Synapse Emulated by Charge Trapping-Based Resistive Switching Device. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800342	6.8	49
75	Flexible Floating Gate Memory 2018 , 215-228		1
74	From biomaterial-based data storage to bio-inspired artificial synapse. <i>Materials Today</i> , 2018 , 21, 537-5.	52 1.8	159
73	Recent Advances of Flexible Data Storage Devices Based on Organic Nanoscaled Materials. <i>Small</i> , 2018 , 14, 1703126	11	102
72	Emerging perovskite materials for high density data storage and artificial synapses. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 1600-1617	7.1	77
71	Highly Sensitive and Ultrastable Skin Sensors for Biopressure and Bioforce Measurements Based on Hierarchical Microstructures. <i>ACS Applied Materials & Discrete Materials & Disc</i>	9.5	59
70	Toward non-volatile photonic memory: concept, material and design. <i>Materials Horizons</i> , 2018 , 5, 641-6.	5 4 4.4	67
69	Evolutionary Metal Oxide Clusters for Novel Applications: Toward High-Density Data Storage in Nonvolatile Memories. <i>Advanced Materials</i> , 2018 , 30, 1703950	24	74

68	Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing. <i>Advanced Materials</i> , 2018 , 30, e1802883	24	282
67	Phosphorene nano-heterostructure based memristors with broadband response synaptic plasticity. Journal of Materials Chemistry C, 2018 , 6, 9383-9393	7.1	37
66	Phosphorene/ZnO Nano-Heterojunctions for Broadband Photonic Nonvolatile Memory Applications. <i>Advanced Materials</i> , 2018 , 30, e1801232	24	68
65	Polyoxometalates-Modulated Reduced Graphene Oxide Flash Memory with Ambipolar Trapping as Bidirectional Artificial Synapse. <i>Advanced Electronic Materials</i> , 2018 , 4, 1800444	6.4	25
64	Infrared-Sensitive Memory Based on Direct-Grown MoS -Upconversion-Nanoparticle Heterostructure. <i>Advanced Materials</i> , 2018 , 30, e1803563	24	57
63	Gate-Tunable Synaptic Plasticity through Controlled Polarity of Charge Trapping in Fullerene Composites. <i>Advanced Functional Materials</i> , 2018 , 28, 1805599	15.6	88
62	Synergies of Electrochemical Metallization and Valance Change in All-Inorganic Perovskite Quantum Dots for Resistive Switching. <i>Advanced Materials</i> , 2018 , 30, e1800327	24	177
61	Biological Spiking Synapse Constructed from Solution Processed Bimetal Core-Shell Nanoparticle Based Composites. <i>Small</i> , 2018 , 14, e1800288	11	54
60	Biodegradable skin-inspired nonvolatile resistive switching memory based on gold nanoparticles embedded alkali lignin. <i>Organic Electronics</i> , 2018 , 59, 382-388	3.5	28
59	Phototunable Biomemory Based on Light-Mediated Charge Trap. <i>Advanced Science</i> , 2018 , 5, 1800714	13.6	75
58	Black Phosphorus Quantum Dots with Tunable Memory Properties and Multilevel Resistive Switching Characteristics. <i>Advanced Science</i> , 2017 , 4, 1600435	13.6	135
57	Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability. <i>Small</i> , 2017 , 13, 1702739	11	123
56	Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. <i>Materials Horizons</i> , 2017 , 4, 997-1019	14.4	250
55	Localized Surface Plasmon Resonance-Mediated Charge Trapping/Detrapping for Core-Shell Nanorod-Based Optical Memory Cells. <i>ACS Applied Materials & Description (Core)</i> 1, 9, 34101-34110	9.5	27
54	An Overview of the Development of Flexible Sensors. <i>Advanced Materials</i> , 2017 , 29, 1700375	24	293
53	Real-time storage of thermal signals in organic memory with floating coreBhell nanoparticles. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 8415-8423	7.1	16
52	Solution-Processed Rare-Earth Oxide Thin Films for Alternative Gate Dielectric Application. <i>ACS Applied Materials & Dielectric Application</i> , 8, 31128-31135	9.5	25
51	Hybrid Flexible Resistive Random Access Memory-Gated Transistor for Novel Nonvolatile Data Storage. <i>Small</i> , 2016 , 12, 390-6	11	32

50	Polymer-modified solution-processed metal oxide dielectrics on aluminum foil substrate for flexible organic transistors. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 2509-2	2517	3
49	Investigation on the mobility and stability in organic thin film transistors consisting of bilayer gate dielectrics. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2016 , 213, 79-84	1.6	13
48	Ultra-flexible nonvolatile memory based on donor-acceptor diketopyrrolopyrrole polymer blends. <i>Scientific Reports</i> , 2015 , 5, 10683	4.9	38
47	Enhanced self-assembled monolayer treatment on polymeric gate dielectrics with ultraviolet/ozone assistance in organic thin film transistors. <i>RSC Advances</i> , 2015 , 5, 64471-64477	3.7	14
46	Reversible conversion of dominant polarity in ambipolar polymer/graphene oxide hybrids. <i>Scientific Reports</i> , 2015 , 5, 9446	4.9	15
45	Two-dimensional molybdenum disulphide nanosheet-covered metal nanoparticle array as a floating gate in multi-functional flash memories. <i>Nanoscale</i> , 2015 , 7, 17496-503	7.7	27
44	Surface Decoration on Polymeric Gate Dielectrics for Flexible Organic Field-Effect Transistors via Hydroxylation and Subsequent Monolayer Self-Assembly. <i>ACS Applied Materials & Company Comp</i>	9.5	18
43	Self-aligned, full solution process polymer field-effect transistor on flexible substrates. <i>Scientific Reports</i> , 2015 , 5, 15770	4.9	11
42	Mobility Enhancement of P3HT-Based OTFTs upon Blending with Au Nanorods. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 1051-1057	3.1	3
41	CdSe/ZnS coreEhell quantum dots charge trapping layer for flexible photonic memory. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3173-3180	7.1	40
40	Surface engineering of reduced graphene oxide for controllable ambipolar flash memories. <i>ACS Applied Materials & District Materials & </i>	9.5	27
39	Dual plasmonic-enhanced bulk-heterojunction solar cell incorporating gold nanoparticles into solution-processed anode buffer layer and active layer. <i>Physica Status Solidi - Rapid Research Letters</i> , 2015 , 9, 115-119	2.5	5
38	Photo-reactive charge trapping memory based on lanthanide complex. <i>Scientific Reports</i> , 2015 , 5, 14998	34.9	27
37	Nanocomposite Dielectric Materials for Organic Flexible Electronics 2014 , 195-220		9
36	Polymorphism and electronic properties of vanadyl-phthalocyanine films. <i>Organic Electronics</i> , 2014 , 15, 1586-1591	3.5	12
35	Flash memory based on solution processed hafnium dioxide charge trapping layer. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 4233-4238	7.1	10
34	The role of a nanoparticle monolayer on the flow of polymer melts in nanochannels. <i>Nanoscale</i> , 2014 , 6, 11013-8	7.7	3
33	Controlled assembly of silver nanoparticles monolayer on 3D polymer nanotubes and their applications. <i>Small</i> , 2014 , 10, 4645-50	11	10

32	Poly(3-hexylthiophene) nanotubes with tunable aspect ratios and charge transport properties. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 11874-81	9.5	21
31	An upconverted photonic nonvolatile memory. <i>Nature Communications</i> , 2014 , 5, 4720	17.4	108
30	Energy-band engineering for tunable memory characteristics through controlled doping of reduced graphene oxide. <i>ACS Nano</i> , 2014 , 8, 1923-31	16.7	42
29	Solution-processable graphene oxide as an insulator layer for metal[hsulatorElemiconductor silicon solar cells. <i>RSC Advances</i> , 2013 , 3, 17918	3.7	12
28	Layer-by-layer-assembled reduced graphene oxide/gold nanoparticle hybrid double-floating-gate structure for low-voltage flexible flash memory. <i>Advanced Materials</i> , 2013 , 25, 872-7, 793	24	153
27	Flexible organic/inorganic heterojunction transistors with low operating voltage. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 7073	7.1	13
26	Importance of alkyl chain-length on the self-assembly of new Ni(qdt)2 complexes and charge transport properties. <i>RSC Advances</i> , 2013 , 3, 12075	3.7	2
25	The strain and thermal induced tunable charging phenomenon in low power flexible memory arrays with a gold nanoparticle monolayer. <i>Nanoscale</i> , 2013 , 5, 1972-9	7.7	37
24	Towards the development of flexible non-volatile memories. <i>Advanced Materials</i> , 2013 , 25, 5425-49	24	394
23	A low voltage programmable unipolar inverter with a gold nanoparticle monolayer on plastic. <i>Nanotechnology</i> , 2013 , 24, 205202	3.4	10
22	Solution processed molecular floating gate for flexible flash memories. <i>Scientific Reports</i> , 2013 , 3, 3093	4.9	48
21	Ambipolar organic light-emitting electrochemical transistor based on a heteroleptic charged iridium(III) complex. <i>Applied Physics Letters</i> , 2013 , 102, 083301	3.4	16
20	Poly(3-hexylthiophene)/Gold Nanoparticle Hybrid System with an Enhanced Photoresponse for Light-Controlled Electronic Devices. <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 599-605	3.1	14
19	Nanocomposite: Poly(3-hexylthiophene)/Gold Nanoparticle Hybrid System with an Enhanced Photoresponse for Light-Controlled Electronic Devices (Part. Part. Syst. Charact. 7/2013). <i>Particle and Particle Systems Characterization</i> , 2013 , 30, 646-646	3.1	1
18	Nonvolatile multilevel data storage memory device from controlled ambipolar charge trapping mechanism. <i>Scientific Reports</i> , 2013 , 3, 2319	4.9	95
17	Towards the Development of Flexible Non-Volatile Memories (Adv. Mater. 38/2013). <i>Advanced Materials</i> , 2013 , 25, 5424-5424	24	2
16	Controlled ambipolar charge transport through a self-assembled gold nanoparticle monolayer. <i>Advanced Materials</i> , 2012 , 24, 1247-51	24	41
15	PolymerBanoparticle hybrid dielectrics for flexible transistors and inverters. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4060		31

LIST OF PUBLICATIONS

14	Structure-charge transport relationship of 5,15-dialkylated porphyrins. <i>Chemical Communications</i> , 2012 , 48, 5139-41	5.8	14
13	Low voltage flexible nonvolatile memory with gold nanoparticles embedded in poly(methyl methacrylate). <i>Nanotechnology</i> , 2012 , 23, 344014	3.4	50
12	Microcontact printing of ultrahigh density gold nanoparticle monolayer for flexible flash memories. <i>Advanced Materials</i> , 2012 , 24, 3556-61	24	131
11	Microcontact Printing: Microcontact Printing of Ultrahigh Density Gold Nanoparticle Monolayer for Flexible Flash Memories (Adv. Mater. 26/2012). <i>Advanced Materials</i> , 2012 , 24, 3555-3555	24	
10	Functional high-k nanocomposite dielectrics for flexible transistors and inverters with excellent mechanical properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14246		33
9	Controllable threshold voltage shifts of polymer transistors and inverters by utilizing gold nanoparticles. <i>Applied Physics Letters</i> , 2012 , 101, 033306	3.4	30
8	Nanoparticle size dependent threshold voltage shifts in organic memory transistors. <i>Journal of Materials Chemistry</i> , 2011 , 21, 14575		74
7	Low temperature processed bilayer dielectrics for low-voltage flexible saturated load inverters. <i>Applied Physics Letters</i> , 2011 , 98, 092904	3.4	19
6	Novel high proton conductive material from liquid crystalline 4-(octadecyloxy)phenylsulfonic acid. <i>Journal of Materials Chemistry</i> , 2010 , 20, 6245		27
5	Ultrasensitive Flexible Memory Phototransistor with Detectivity of 1.8🛮 0 13 Jones for Artificial Visual Nociceptor. <i>Advanced Intelligent Systems</i> ,2100257	6	2
4	Grain Boundary Confinement of Silver Imidazole for Resistive Switching. <i>Advanced Functional Materials</i> ,2108598	15.6	2
3	2D Heterostructure for High-Order Spatiotemporal Information Processing. <i>Advanced Functional Materials</i> ,2108440	15.6	9
2	Bio-Inspired 3D Artificial Neuromorphic Circuits. Advanced Functional Materials,2113050	15.6	5
1	Manipulating Strain in Transistors: From Mechanically Sensitive to Insensitive. <i>Advanced Electronic Materials</i> ,2101288	6.4	