
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2525206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellulose Nanoparticles: Structure–Morphology–Rheology Relationships. ACS Sustainable Chemistry and Engineering, 2015, 3, 821-832.	6.7	379
2	A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydrate Polymers, 2013, 97, 226-234.	10.2	253
3	Crâ€Doped FeNi–P Nanoparticles Encapsulated into Nâ€Doped Carbon Nanotube as a Robust Bifunctional Catalyst for Efficient Overall Water Splitting. Advanced Materials, 2019, 31, e1900178.	21.0	246
4	Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. Journal of Power Sources, 2017, 351, 130-137.	7.8	244
5	Cellulose Nanocrystals and Polyanionic Cellulose as Additives in Bentonite Water-Based Drilling Fluids: Rheological Modeling and Filtration Mechanisms. Industrial & Engineering Chemistry Research, 2016, 55, 133-143.	3.7	152
6	A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates. Journal of Materials Chemistry A, 2016, 4, 14111-14121.	10.3	132
7	Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments. Carbohydrate Polymers, 2016, 136, 485-492.	10.2	103
8	A branch-like Mo-doped Ni ₃ S ₂ nanoforest as a high-efficiency and durable catalyst for overall urea electrolysis. Journal of Materials Chemistry A, 2021, 9, 3418-3426.	10.3	93
9	A facile and novel emulsion for efficient and convenient fabrication of durable superhydrophobic materials. Chemical Engineering Journal, 2017, 328, 186-196.	12.7	87
10	Efficiently texturing hierarchical epoxy layer for smart superhydrophobic surfaces with excellent durability and exceptional stability exposed to fire. Chemical Engineering Journal, 2018, 348, 212-223.	12.7	68
11	Construction of N-doped carbon nanotube encapsulated active nanoparticles in hierarchically porous carbonized wood frameworks to boost the oxygen evolution reaction. Applied Catalysis B: Environmental, 2020, 279, 119367.	20.2	65
12	Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES. Applied Surface Science, 2016, 386, 115-124.	6.1	64
13	Cellulose nanofibrils enable flower-like BiOCl for high-performance photocatalysis under visible-light irradiation. Applied Surface Science, 2019, 464, 606-615.	6.1	63
14	Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose, 2015, 22, 1091-1102.	4.9	61
15	Cellulose Nanofibers as a Modifier for Rheology, Curing and Mechanical Performance of Oil Well Cement. Scientific Reports, 2016, 6, 31654.	3.3	59
16	Electrodes derived from carbon fiber-reinforced cellulose nanofiber/multiwalled carbon nanotube hybrid aerogels for high-energy flexible asymmetric supercapacitors. Chemical Engineering Journal, 2020, 379, 122325.	12.7	59
17	Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process. Applied Surface Science, 2015, 330, 332-338.	6.1	56
18	Texturing commercial epoxy with hierarchical and porous structure for robust superhydrophobic coatings. Applied Surface Science, 2019, 466, 84-91.	6.1	54

#	Article	IF	CITATIONS
19	Manipulating nickel oxides in naturally derived cellulose nanofiber networks as robust cathodes for high-performance Ni–Zn batteries. Journal of Materials Chemistry A, 2020, 8, 565-572.	10.3	53
20	One-step approach to prepare superhydrophobic wood with enhanced mechanical and chemical durability: Driving of alkali. Applied Surface Science, 2018, 455, 115-122.	6.1	51
21	CoP Nanoparticle Confined in P, N Coâ€Doped Porous Carbon Anchored on Pâ€Doped Carbonized Wood Fibers with Tailored Electronic Structure for Efficient Urea Electroâ€Oxidation. Small, 2022, 18, e2200950.	10.0	48
22	<i>In Situ</i> Growth of Porous Ultrathin Ni(OH) ₂ Nanostructures on Nickel Foam: An Efficient and Durable Catalysts for Urea Electrolysis. ACS Applied Energy Materials, 2020, 3, 2996-3004.	5.1	46
23	Mechanically strong and thermosensitive hydrogels reinforced with cellulose nanofibrils. Polymer Chemistry, 2016, 7, 7142-7151.	3.9	44
24	Fe ₃ O ₄ nanoparticles embedded in cellulose nanofibre/graphite carbon hybrid aerogels as advanced negative electrodes for flexible asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 17378-17388.	10.3	42
25	Boosting oxygen evolution activity of NiFe layered double hydroxide through interface engineering assisted with naturally-hierarchical wood. Chemical Engineering Journal, 2021, 421, 129751.	12.7	41
26	Stretchable alkaline poly(acrylic acid) electrolyte with high ionic conductivity enhanced by cellulose nanofibrils. Electrochimica Acta, 2018, 270, 302-309.	5.2	37
27	Thermally-induced all-damage-healable superhydrophobic surface with photocatalytic performance from hierarchical BiOCl. Chemical Engineering Journal, 2019, 366, 439-448.	12.7	37
28	Resin impregnation of cellulose nanofibril films facilitated by water swelling. Cellulose, 2013, 20, 303-313.	4.9	36
29	Preparation and Formation Mechanism of Covalent–Noncovalent Forces Stabilizing Lignin Nanospheres and Their Application in Superhydrophobic and Carbon Materials. ACS Sustainable Chemistry and Engineering, 2021, 9, 3811-3820.	6.7	34
30	A green route to prepare fluorescent and absorbent nano-hybrid hydrogel for water detection. Scientific Reports, 2017, 7, 4380.	3.3	32
31	Manipulation of Nanoplate Structures in Carbonized Cellulose Nanofibril Aerogel for High-Performance Supercapacitor. Journal of Physical Chemistry C, 2019, 123, 23374-23381.	3.1	31
32	A Temperatureâ€Controlled, Conductive PANI@CNFs/MEO ₂ MA/PEGMA Hydrogel for Flexible Temperature Sensors. Macromolecular Rapid Communications, 2018, 39, e1700836.	3.9	30
33	Hierarchically Interconnected N-Doped Carbon Aerogels Derived from Cellulose Nanofibrils as High Performance and Stable Electrodes for Supercapacitors. Journal of Physical Chemistry C, 2018, 122, 23852-23860.	3.1	30
34	Configuring hierarchical Ni/NiO 3D-network assisted with bamboo cellulose nanofibers for high-performance Ni–Zn aqueous batteries. Nanoscale, 2020, 12, 14651-14660.	5.6	29
35	Nanocellulose composites with enhanced interfacial compatibility and mechanical properties using a hybrid-toughened epoxy matrix. Carbohydrate Polymers, 2017, 177, 249-257.	10.2	28
36	Reusable and crossâ€linked cellulose nanofibrils aerogel for the removal of heavy metal ions. Polymer Composites, 2018, 39, 4442-4451.	4.6	27

#	Article	IF	CITATIONS
37	Cellulose nanofibrils anchored Ag on graphitic carbon nitride for efficient photocatalysis under visible light. Environmental Science: Nano, 2018, 5, 2129-2143.	4.3	27
38	A Comparison Study on the Characteristics of Nanofibrils Isolated from Fibers and Parenchyma Cells in Bamboo. Materials, 2020, 13, 237.	2.9	26
39	Cellulose Nanofibrils Aerogel Cross-Linked by Poly(vinyl alcohol) and Acrylic Acid for Efficient and Recycled Adsorption with Heavy Metal Ions. Journal of Nanoscience and Nanotechnology, 2018, 18, 4167-4175.	0.9	25
40	Electronic structure modulation of nickel hydroxide porous nanowire arrays via manganese doping for urea-assisted energy-efficient hydrogen generation. Journal of Colloid and Interface Science, 2022, 626, 445-452.	9.4	24
41	Synergistic Effect of Nanosilica Aerogel with Phosphorus Flame Retardants on Improving Flame Retardancy and Leaching Resistance of Wood. Journal of Nanomaterials, 2014, 2014, 1-8.	2.7	22
42	A coating-free superhydrophobic sensing material for full-range human motion and microliter droplet impact detection. Chemical Engineering Journal, 2021, 410, 128418.	12.7	22
43	Porous 3D Honeycomb Structure Biomass Carbon as a Supercapacitor Electrode Material to Achieve Efficient Energy Storage. Industrial & Engineering Chemistry Research, 2021, 60, 11079-11085.	3.7	22
44	Construction of NiS/Ni3S4 heteronanorod arrays in graphitized carbonized wood frameworks as versatile catalysts for efficient urea-assisted water splitting. Journal of Colloid and Interface Science, 2022, 626, 848-857.	9.4	21
45	Ni@Ni ₂ P Encapsulation in Interconnected N-Doped Carbonized Cellulose Nanofibril Network for Efficient Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 1859-1867.	6.7	20
46	Ultralight Industrial Bamboo Residue-Derived Holocellulose Thermal Insulation Aerogels with Hydrophobic and Fire Resistant Properties. Materials, 2020, 13, 477.	2.9	17
47	Comparative Performance of Three Magnesium Compounds on Thermal Degradation Behavior of Red Gum Wood. Materials, 2014, 7, 637-652.	2.9	14
48	Anisotropic cellulose nanocrystal hydrogel with multi-stimuli response to temperature and mechanical stress. Carbohydrate Polymers, 2022, 280, 119005.	10.2	14
49	Flame retardancy and thermal degradation behavior of red gum wood treated with hydrate magnesium chloride. Journal of Industrial and Engineering Chemistry, 2014, 20, 3536-3542.	5.8	12
50	Well-aligned arrangement CoFe nanoparticles assisted with cellulose nanofibrils for efficient oxygen evolution reaction. Applied Surface Science, 2020, 510, 145484.	6.1	12
51	New insight into island-like structure driven from hydroxyl groups for high-performance superhydrophobic surfaces. Chemical Engineering Journal, 2021, 416, 129078.	12.7	12
52	Water-Triggered Dimensional Swelling of Cellulose Nanofibril Films: Instant Observation Using Optical Microscope. Journal of Nanomaterials, 2013, 2013, 1-6.	2.7	11
53	Chiral nematic assemblies of silver nanoparticles in cellulose nanocrystal membrane with tunable optical properties. Journal of Materials Science, 2019, 54, 6699-6708.	3.7	11
54	<i>In situ</i> filling of a robust carbon sponge with hydrogel electrolyte: a type of omni-healable electrode for flexible supercapacitors. Journal of Materials Chemistry A, 2020, 8, 7746-7755.	10.3	11

#	Article	IF	CITATIONS
55	Naturalâ€Celluloseâ€Nanofibrilâ€Tailored NiFe Nanoparticles for Efficient Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 3303-3310.	3.4	10
56	Degradation of urea-formaldehyde resin residues by a hydrothermal oxidation method into recyclable small molecular organics. Journal of Hazardous Materials, 2022, 426, 127783.	12.4	10
57	Ferric Ions Modified Polyvinyl Alcohol for Enhanced Molecular Structure and Mechanical Performance. Materials, 2020, 13, 1412.	2.9	9
58	Fundamental understanding of electrochemical catalytic performance of carbonized natural wood: wood species and carbonization temperature. Sustainable Energy and Fuels, 2021, 5, 6077-6084.	4.9	9
59	Calcium carbonate modified urea–formaldehyde resin adhesive for strength enhanced medium density fiberboard production. RSC Advances, 2021, 11, 25010-25017.	3.6	8
60	Obtaining nanofibers from lignocellulosic residues after bioethanol production. Cellulose, 2019, 26, 3725-3734.	4.9	6
61	Fabrication of Robust, Highly Conductive, and Elastic Hybrid Carbon Foam Platform for High-Performance Compressible Asymmetry Supercapacitors. ACS Omega, 2021, 6, 14230-14241.	3.5	6
62	Preparation and Characterization of Ethyl Cellulose-Based Core–Shell Microcapsules Containing Argy Wormwood Solution. Journal of Nanoscience and Nanotechnology, 2016, 16, 12444-12448.	0.9	5
63	Lignin-derived hierarchical porous carbon supported Pd nanoparticles as an efficient electrocatalyst for ethanol oxidation. Journal of Porous Materials, 2021, 28, 337-344.	2.6	5
64	Approaching well-dispersed MoS2 assisted with cellulose nanofiber for highly durable hydrogen evolution reaction. Carbohydrate Polymers, 2022, 294, 119754.	10.2	5
65	Constructing hollow nanorod arrays by nickel–cobalt phosphide nanosheets as high-performance electrocatalysts for urea-assisted energy-efficient hydrogen generation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129695.	4.7	5
66	Preparation of Silicon Reinforced Poplar Wood Composites and their Thermal Properties. Applied Mechanics and Materials, 0, 48-49, 848-852.	0.2	2
67	Study on Energy Saving of Chinese-fir Wood Carbonization Process Based on Moisture Absorption Characteristics. , 2009, , .		0
68	Study on Bioenergy Recovery of Chemical Components of Bambusa Blumeana by Py-GC/MS. , 2009, , .		0
69	Study on Extraction Technology of Hemicellulose from Pinus massoniana Waste Wood for Bioenergy. , 2009, , .		0
70	Effects of Fiber Mass Fraction and Alkali Concentration on Mechanical Properties of Biodegradable Composites. Advanced Materials Research, 0, 152-153, 1677-1682.	0.3	0
71	Effects of Different Pretreatments of Wood Fiber on Mechanical Properties of Biodegradable Composite. Advanced Materials Research, 0, 150-151, 1438-1443.	0.3	0
72	Performance Evaluation of Flame-Retardant NSCFR-Treated Laminated Veneer Lumber(LVL) Partâ:Thermal, Physical and Mechanical Properties. Advanced Materials Research, 2010, 168-170, 2106-2110.	0.3	0

#	Article	IF	CITATIONS
73	Effect of freeze dry on the properties of cellulose nanofibrils/phenol formaldehyde nanocomposites. , 2012, , .		0
74	Deconstruction of Poplar Wood using Peracetic Acid and FeCl 3 in Hot Water. ChemistrySelect, 2022, 7, .	1.5	0