
Christopher W O'dell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2524804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) versionÂ9 and in situ data and comparison to OCO-2 versionÂ7. Atmospheric Chemistry and Physics, 2022, 22, 1097-1130.	4.9	44
2	An 11-year record of XCO ₂ estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm. Earth System Science Data, 2022, 14, 325-360.	9.9	17
3	Analysis of 3D cloud effects in OCO-2 XCO2 retrievals. Atmospheric Measurement Techniques, 2021, 14, 1475-1499.	3.1	13
4	Can a regional-scale reduction of atmospheric CO ₂ during the COVID-19 pandemic be detected from space? A case study for East China using satellite XCO ₂ retrievals. Atmospheric Measurement Techniques, 2021, 14, 2141-2166.	3.1	28
5	The Atmospheric Carbon and Transport (ACT)-America Mission. Bulletin of the American Meteorological Society, 2021, 102, E1714-E1734.	3.3	17
6	Solar-induced chlorophyll fluorescence from the Geostationary Carbon Cycle Observatory (GeoCarb): An extensive simulation study. Remote Sensing of Environment, 2021, 263, 112565.	11.0	9
7	Advances in quantifying power plant CO2 emissions with OCO-2. Remote Sensing of Environment, 2021, 264, 112579.	11.0	41
8	Fossil fuel CO2 emissions over metropolitan areas from space: A multi-model analysis of OCO-2 data over Lahore, Pakistan. Remote Sensing of Environment, 2021, 264, 112625.	11.0	24
9	Regional impacts of COVID-19 on carbon dioxide detected worldwide from space. Science Advances, 2021, 7, eabf9415.	10.3	33
10	Assessing the feasibility of using a neural network to filter Orbiting Carbon ObservatoryÂ2 (OCO-2) retrievals at northern high latitudes. Atmospheric Measurement Techniques, 2021, 14, 7511-7524.	3.1	4
11	Absorption coefficient (ABSCO) tables for the Orbiting Carbon Observatories: Version 5.1. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 255, 107217.	2.3	24
12	OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals. Remote Sensing of Environment, 2020, 251, 112032.	11.0	89
13	Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature, 2020, 586, 720-723.	27.8	320
14	Corrigendum to "Absorption coefficient (ABSCO) tables for the Orbiting Carbon Observatories: Version 5.1―[J. Quant. Spectrosc. Radiat. Transf. 255 (2020) 107217]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 257, 107333.	2.3	1
15	Local Anomalies in the Columnâ€Averaged Dry Air Mole Fractions of Carbon Dioxide Across the Globe During the First Months of the Coronavirus Recession. Geophysical Research Letters, 2020, 47, e2020GL090244.	4.0	31
16	Carbon Dioxide Emissions During the 2018 Kilauea Volcano Eruption Estimated Using OCOâ€⊋ Satellite Retrievals. Geophysical Research Letters, 2020, 47, e2020GL090507.	4.0	10
17	Ensemble-based satellite-derived carbon dioxide and methane column-averaged dry-air mole fraction data sets (2003–2018) for carbon and climate applications. Atmospheric Measurement Techniques, 2020, 13, 789-819.	3.1	22
18	Evaluation of OCOâ€2 X Variability at Local and Synoptic Scales using Lidar and In Situ Observations from the ACTâ€America Campaigns. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031400.	3.3	16

CHRISTOPHER W O'DELL

#	Article	IF	CITATIONS
19	Field Evaluation of Column CO ₂ Retrievals From Intensityâ€Modulated Continuousâ€Wave Differential Absorption Lidar Measurements During the ACTâ€America Campaign. Earth and Space Science, 2020, 7, e2019EA000847.	2.6	18
20	Quality controls, bias, and seasonality of CO ₂ columns in the boreal forest with Orbiting Carbon Observatory-2, Total Carbon Column Observing Network, and EM27/SUN measurements. Atmospheric Measurement Techniques, 2020, 13, 5033-5063.	3.1	22
21	Retrieved wind speed from the Orbiting Carbon Observatory-2. Atmospheric Measurement Techniques, 2020, 13, 6889-6899.	3.1	3
22	Towards monitoring localized CO ₂ emissions from space: co-located regional CO ₂ and NO ₂ enhancements observed by the OCO-2 and S5P satellites. Atmospheric Chemistry and Physics, 2019, 19, 9371-9383.	4.9	107
23	The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network. Atmospheric Chemistry and Physics, 2019, 19, 9797-9831.	4.9	113
24	The impact of improved aerosol priors on near-infrared measurements of carbon dioxide. Atmospheric Measurement Techniques, 2019, 12, 1495-1512.	3.1	14
25	How bias correction goes wrong: measurement of X _{CO₂} affected by erroneous surface pressure estimates. Atmospheric Measurement Techniques, 2019, 12, 2241-2259.	3.1	99
26	The OCO-3 mission: measurement objectives and expected performance based on 1Âyear of simulated data. Atmospheric Measurement Techniques, 2019, 12, 2341-2370.	3.1	170
27	Validation of OCO-2 error analysis using simulated retrievals. Atmospheric Measurement Techniques, 2019, 12, 5317-5334.	3.1	15
28	Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmospheric Chemistry and Physics, 2019, 19, 14233-14251.	4.9	59
29	Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmospheric Measurement Techniques, 2018, 11, 6539-6576.	3.1	188
30	Computation and analysis of atmospheric carbon dioxide annual mean growth rates from satellite observations during 2003–2016. Atmospheric Chemistry and Physics, 2018, 18, 17355-17370.	4.9	27
31	Response to Comment on "Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño― Science, 2018, 362, .	12.6	6
32	The Potential of the Geostationary Carbon Cycle Observatory (GeoCarb) to Provide Multi-scale Constraints on the Carbon Cycle in the Americas. Frontiers in Environmental Science, 2018, 6, .	3.3	60
33	Preflight Spectral Calibration of the Orbiting Carbon Observatory 2. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 2499-2508.	6.3	24
34	The Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP). Journal of Climate, 2017, 30, 10193-10210.	3.2	72
35	Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science, 2017, 358, .	12.6	307
36	The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science, 2017, 358, .	12.6	157

CHRISTOPHER W O'DELL

#	Article	IF	CITATIONS
37	Influence of El Niño on atmospheric CO ₂ over the tropical Pacific Ocean: Findings from NASA's OCO-2 mission. Science, 2017, 358, .	12.6	90
38	Spaceborne detection of localized carbon dioxide sources. Science, 2017, 358, .	12.6	127
39	Evaluation of Cloud Liquid Water Path Trends Using a Multidecadal Record of Passive Microwave Observations. Journal of Climate, 2017, 30, 5871-5884.	3.2	20
40	Lower-tropospheric CO ₂ from near-infrared ACOS-GOSAT observations. Atmospheric Chemistry and Physics, 2017, 17, 5407-5438.	4.9	15
41	Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) <i>X</i> _{CO₂&am measurements with TCCON. Atmospheric Measurement Techniques, 2017, 10, 2209-2238.}	p; 8t;1 /sub&a	ın ap æt;
42	The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmospheric Measurement Techniques, 2017, 10, 59-81.	3.1	271
43	Evaluation and attribution of OCO-2 XCO ₂ uncertainties. Atmospheric Measurement Techniques, 2017, 10, 2759-2771.	3.1	39
44	Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data. Atmospheric Measurement Techniques, 2016, 9, 973-989.	3.1	71
45	The potential of clear-sky carbon dioxide satellite retrievals. Atmospheric Measurement Techniques, 2016, 9, 1671-1684.	3.1	14
46	Quantification of uncertainties in OCO-2 measurements of XCO ₂ : simulations and linear error analysis. Atmospheric Measurement Techniques, 2016, 9, 5227-5238.	3.1	79
47	Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON. Atmospheric Measurement Techniques, 2016, 9, 683-709.	3.1	80
48	Evidence for climate change in the satellite cloud record. Nature, 2016, 536, 72-75.	27.8	264
49	Combining GOSAT <i>X</i> CO ₂ observations over land and ocean to improve regional CO ₂ flux estimates. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1896-1913.	3.3	37
50	Highâ€accuracy measurements of total column water vapor from the Orbiting Carbon Observatoryâ€2. Geophysical Research Letters, 2016, 43, 12,261.	4.0	33
51	Using airborne HIAPER Pole-to-Pole Observations (HIPPO) to evaluate model and remote sensing estimates of atmospheric carbon dioxide. Atmospheric Chemistry and Physics, 2016, 16, 7867-7878.	4.9	26
52	Validation of TANSO-FTS/GOSAT XCO ₂ and XCH ₄ glint mode retrievals using TCCON data from near-ocean sites. Atmospheric Measurement Techniques, 2016, 9, 1415-1430.	3.1	30
53	Toward robust and consistent regional CO ₂ flux estimates from in situ and spaceborne measurements of atmospheric CO ₂ . Geophysical Research Letters, 2014, 41, 1065-1070.	4.0	126
54	Influence of differences in current GOSAT <i>X</i> _{CO}₂ retrievals on surface flux estimation. Geophysical Research Letters, 2014, 41, 2598-2605.	4.0	45

#	Article	IF	CITATIONS
55	Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sensing of Environment, 2014, 147, 1-12.	11.0	361
56	Testing the Polarization Model for TANSO-FTS on GOSAT Against Clear-Sky Observations of Sun Glint Over the Ocean. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 5199-5209.	6.3	11
57	Interpreting seasonal changes in the carbon balance of southern Amazonia using measurements of XCO ₂ and chlorophyll fluorescence from GOSAT. Geophysical Research Letters, 2013, 40, 2829-2833.	4.0	89
58	Error statistics of Bayesian CO ₂ flux inversion schemes as seen from GOSAT. Geophysical Research Letters, 2013, 40, 1252-1256.	4.0	19
59	Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO ₂ retrievals over TCCON sites. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1493-1512.	3.3	46
60	Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space: Validation of PPDFâ€based CO ₂ retrievals from GOSAT. Journal of Geophysical Research, 2012, 117, .	3.3	42
61	Global CO ₂ distributions over land from the Greenhouse Gases Observing Satellite (GOSAT). Geophysical Research Letters, 2012, 39, .	4.0	58
62	Comparison of Cloud-Screening Methods Applied to GOSAT Near-Infrared Spectra. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 295-309.	6.3	49
63	Preflight Radiometric Calibration of the Orbiting Carbon Observatory. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 2438-2447.	6.3	27
64	Preflight Spectral Calibration of the Orbiting Carbon Observatory. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 2793-2801.	6.3	33
65	Relationships between tropical sea surface temperature and topâ€ofâ€atmosphere radiation. Geophysical Research Letters, 2010, 37, .	4.0	66
66	Acceleration of multipleâ€scattering, hyperspectral radiative transfer calculations via lowâ€streams interpolation. Journal of Geophysical Research, 2010, 115, .	3.3	49
67	A Revised Cloud Overlap Scheme for Fast Microwave Radiative Transfer in Rain and Cloud. Journal of Applied Meteorology and Climatology, 2009, 48, 2257-2270.	1.5	40
68	CO2 Retrieval over Clouds from the OCO Mission: Model Simulations and Error Analysis. Journal of Atmospheric and Oceanic Technology, 2009, 26, 1090-1104.	1.3	6
69	Cloud Liquid Water Path from Satellite-Based Passive Microwave Observations: A New Climatology over the Global Oceans. Journal of Climate, 2008, 21, 1721-1739.	3.2	199
70	A Fast Cloud Overlap Parameterization for Microwave Radiance Assimilation. Journals of the Atmospheric Sciences, 2007, 64, 3896-3909.	1.7	7
71	An Instrument for Investigating the Large Angular Scale Polarization of the Cosmic Microwave Background. Astrophysical Journal, Supplement Series, 2003, 144, 1-20.	7.7	17
72	A Limit on the Large Angular Scale Polarization of the Cosmic Microwave Background. Astrophysical Journal, 2001, 560, L1-L4.	4.5	45