Weijia Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2524350/publications.pdf

Version: 2024-02-01

19	668	687363	794594
papers	citations	h-index	g-index
19	19	19	1087
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Asymmetric organelle inheritance predicts human blood stem cell fate. Blood, 2022, 139, 2011-2023.	1.4	32
2	Cytokine combinations for human blood stem cell expansion induce cell-type– and cytokine-specific signaling dynamics. Blood, 2021, 138, 847-857.	1.4	21
3	TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell, 2021, 28, 1838-1850.e10.	11.1	69
4	Sphingosine-1-Phosphate Receptor 3 Potentiates Inflammatory Programs in Normal and Leukemia Stem Cells to Promote Differentiation. Blood Cancer Discovery, 2021, 2, 32-53.	5.0	35
5	An Immunocompetent Microphysiological System to Simultaneously Investigate Effects of Anti-Tumor Natural Killer Cells on Tumor and Cardiac Microtissues. Frontiers in Immunology, 2021, 12, 781337.	4.8	12
6	An automated microfluidic system for efficient capture of rare cells and rapid flow-free stimulation. Lab on A Chip, 2020, 20, 4246-4254.	6.0	12
7	Mouse and human HSPC immobilization in liquid culture by CD43- or CD44-antibody coating. Blood, 2018, 131, 1425-1429.	1.4	26
8	Steric Hindrance Assay for Secreted Factors in Stem Cell Culture. ACS Sensors, 2017, 2, 495-500.	7.8	14
9	Distinct signaling programs control human hematopoietic stem cell survival and proliferation. Blood, 2017, 129, 307-318.	1.4	35
10	Enhanced human hematopoietic stem and progenitor cell engraftment by blocking donor T cell–mediated TNFα signaling. Science Translational Medicine, 2017, 9, .	12.4	23
11	Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform. Scientific Reports, 2016, 6, 31951.	3.3	29
12	Proportional-Integral-Derivative (PID) Control of Secreted Factors for Blood Stem Cell Culture. PLoS ONE, 2015, 10, e0137392.	2.5	11
13	Intercellular network structure and regulatory motifs in the human hematopoietic system. Molecular Systems Biology, 2014, 10, 741.	7.2	57
14	Blood stem cell fate regulation by Delta-1–mediated rewiring of IL-6 paracrine signaling. Blood, 2014, 123, 650-658.	1.4	23
15	Biochemical measurements on single erythroid progenitor cells shed light on the combinatorial regulation of red blood cell production. Molecular BioSystems, 2013, 9, 234-245.	2.9	3
16	Integrative network analysis of signaling in human CD34 ⁺ hematopoietic progenitor cells by global phosphoproteomic profiling using TiO ₂ enrichment combined with 2D LCâ€MS/MS and pathway mapping. Proteomics, 2013, 13, 1325-1333.	2.2	14
17	Rapid Expansion of Human Hematopoietic Stem Cells by Automated Control of Inhibitory Feedback Signaling. Cell Stem Cell, 2012, 10, 218-229.	11.1	224
18	Measurement of generationâ€dependent proliferation rates and death rates during mouse erythroid progenitor cell differentiation. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 382-389.	1.5	11

#	Article	IF	CITATIONS
19	Synergy between erythropoietin and stem cell factor during erythropoiesis can be quantitatively described without coâ€signaling effects. Biotechnology and Bioengineering, 2008, 99, 1261-1272.	3.3	17